论文标题
重组的预训练
reStructured Pre-training
论文作者
论文摘要
在这项工作中,我们试图在过去几十年中解释NLP技术开发的内部联系,以寻找本质,这使我们对NLP任务的(潜在的)新学习范式奖励了我们,被称为重组的预训练(RST)。在这样的范式中,将重新强调数据的作用,并将下游任务的模型预训练和微调视为数据存储和访问的过程。基于此,我们将良好的存储机制不仅应具有缓存大量数据的能力,而且还考虑易于访问的能力。在克服了多种工程挑战之后,我们通过重组的数据进行预训练模型而不是原始数据来实现这一目标。在实验上,RSS模型不仅超过了来自各种NLP任务的52/55流行数据集的强大竞争对手(例如T0),而且在国家大学入学考试(Gaokao -English)中取得了卓越的表现,英语(Gaokao -English)是中国最权威的考试。具体而言,所提出的系统QIN比学生的平均得分高40点,比1/16参数的GPT3高15分。特别是,在2018年英语考试(国家论文III)中,秦的高分为138.5(全分为150)。我们已经使用在线提交平台发布了Gaokao基准。 此外,我们在几天前(2022.06.08)发生的2022年大学入学考试英语中测试了我们的模型,总得分为134(V.S. GPT3的108)。
In this work, we try to decipher the internal connection of NLP technology development in the past decades, searching for essence, which rewards us with a (potential) new learning paradigm for NLP tasks, dubbed as reStructured Pre-training (RST). In such a paradigm, the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing. Based on that, we operationalize the simple principle that a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. We achieve this by pre-training models over restructured data that consist of a variety of valuable information instead of raw data after overcoming several engineering challenges. Experimentally, RST models not only surpass strong competitors (e.g., T0) on 52/55 popular datasets from a variety of NLP tasks, but also achieve superior performance in National College Entrance Examination - English (Gaokao-English),the most authoritative examination in China. Specifically, the proposed system Qin achieves 40 points higher than the average scores made by students and 15 points higher than GPT3 with 1/16 parameters. In particular, Qin gets a high score of 138.5 (the full mark is 150) in the 2018 English exam (national paper III). We have released the Gaokao Benchmark with an online submission platform. In addition, we test our model in the 2022 College Entrance Examination English that happened a few days ago (2022.06.08), and it gets a total score of 134 (v.s. GPT3's 108).