论文标题
通过重新思考其对称性来理解和扩展gnns
Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
论文作者
论文摘要
graph gnns是最近表达的图形神经网络(GNN),将其模拟为子图的集合。到目前为止,可能的子图GNN体系结构的设计空间及其基本理论属性仍然在很大程度上尚未探索。在本文中,我们研究了子图方法的最突出形式,该方法采用了基于节点的子图选择策略,例如自我网络或节点标记和删除。我们解决了两个核心问题:(1)这些方法的表现力的上限是什么? (2)在这些子图集上传递层的epovariant消息家族是什么?我们回答这些问题的第一步是一种新颖的对称分析,该分析表明,建模基于节点的子图集的对称性需要比以前的作品中所采用的对称组要小得多。然后,该分析用于建立子图GNN和不变图网络(IGNS)之间的联系。我们通过首先通过3-WL来界定子图方法的表达能力,然后提出了一个通用子图方法的一般家族,以将所有先前基于节点的子图GNN概括为概括。最后,我们设计了一个新颖的子图Gnn称为Sun,从理论上讲,该子GNN统一了以前的体系结构,同时在多个基准上提供了更好的经验性能。
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most prominent form of subgraph methods, which employs node-based subgraph selection policies such as ego-networks or node marking and deletion. We address two central questions: (1) What is the upper-bound of the expressive power of these methods? and (2) What is the family of equivariant message passing layers on these sets of subgraphs?. Our first step in answering these questions is a novel symmetry analysis which shows that modelling the symmetries of node-based subgraph collections requires a significantly smaller symmetry group than the one adopted in previous works. This analysis is then used to establish a link between Subgraph GNNs and Invariant Graph Networks (IGNs). We answer the questions above by first bounding the expressive power of subgraph methods by 3-WL, and then proposing a general family of message-passing layers for subgraph methods that generalises all previous node-based Subgraph GNNs. Finally, we design a novel Subgraph GNN dubbed SUN, which theoretically unifies previous architectures while providing better empirical performance on multiple benchmarks.