论文标题

MR图像中基于CNN的全自动手腕软骨体积定量

CNN-based fully automatic wrist cartilage volume quantification in MR Image

论文作者

Vladimirov, Nikita, Brui, Ekaterina, Levchuk, Anatoliy, Fokin, Vladimir, Efimtcev, Aleksandr, Bendahan, David

论文摘要

检测软骨损失对于诊断骨和类风湿关节炎至关重要。到目前为止,已经有大量自动分割工具用于大型关节的磁共振图像中的软骨评估。与膝盖或臀部相比,手腕软骨具有更复杂的结构,因此为大型关节开发的自动工具预计不会用于手腕软骨分割。在这方面,全自动手腕软骨分割方法将具有很高的临床意义。我们评估了U-NET体系结构的四个优化变体的性能,并截断了其深度和注意力层(U-NET_AL)。将相应的结果与我们先前设计的基于斑块的卷积神经网络(CNN)的结果进行了比较。根据对比较分析的比较分析,使用几种形态学(2D DSC,3D DSC,精度)和体积指标评估了分割质量。这四个网络在分割均匀性和质量方面优于基于补丁的CNN。使用U-NET_AL计算的中值3D DSC值(0.817)明显大于其他网络计算的相应DSC值。此外,相对于地面真相,U-NET_AL CNN提供了最低的平均体积误差(17%)和最高的Pearson相关系数(0.765)。值得注意的是,使用U-NET_AL计算出的可重复性大于手动分割的可重复性。具有其他注意力层的U-NET卷积神经网络提供了最佳的手腕软骨分割性能。为了在临床条件下使用,可以在代表一组特定患者的数据集中微调训练的网络。软骨体积测量的误差应使用非MRI方法独立评估。

Detection of cartilage loss is crucial for the diagnosis of osteo- and rheumatoid arthritis. A large number of automatic segmentation tools have been reported so far for cartilage assessment in magnetic resonance images of large joints. As compared to knee or hip, wrist cartilage has a more complex structure so that automatic tools developed for large joints are not expected to be operational for wrist cartilage segmentation. In that respect, a fully automatic wrist cartilage segmentation method would be of high clinical interest. We assessed the performance of four optimized variants of the U-Net architecture with truncation of its depth and addition of attention layers (U-Net_AL). The corresponding results were compared to those from a patch-based convolutional neural network (CNN) we previously designed. The segmentation quality was assessed on the basis of a comparative analysis with manual segmentation using several morphological (2D DSC, 3D DSC, precision) and a volumetric metrics. The four networks outperformed the patch-based CNN in terms of segmentation homogeneity and quality. The median 3D DSC value computed with the U-Net_AL (0.817) was significantly larger than the corresponding DSC values computed with the other networks. In addition, the U-Net_AL CNN provided the lowest mean volume error (17%) and the highest Pearson correlation coefficient (0.765) with respect to the ground truth. Of interest, the reproducibility computed from using U-Net_AL was larger than the reproducibility of the manual segmentation. U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance. In order to be used in clinical conditions, the trained network can be fine-tuned on a dataset representing a group of specific patients. The error of cartilage volume measurement should be assessed independently using a non-MRI method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源