论文标题

运动步态:通过运动激发的步态识别

Motion Gait: Gait Recognition via Motion Excitation

论文作者

Zhang, Yunpeng, Wang, Zhengyou, Zhuang, Shanna, Wang, Hui

论文摘要

步态识别能够实现长途且无接触式识别,是一项重要的生物识别技术。最近的步态识别方法着重于学习步行过程中人类运动或外观的模式,并构建相应的时空表示。但是,不同的个体有自己的运动模式定律,简单的时空特征很难描述人类部位运动的变化,尤其是当包括服装和携带等混淆变量时,因此可以降低特征的区分性。在本文中,我们提出了运动激发模块(MEM)来指导时空特征,以专注于具有较大动态变化的人类部位,MEM了解了框架和间隔之间的差异信息,以便获得时间运动变化的表示,值得一提的是,MEM可以提及具有不确定长度的帧序列,并且不会添加任何其他参数。此外,我们提出了精细的提取器(FFE),该提取器(FFE)独立地根据个体的不同水平部分学习人体的时空表示。受益于MEM和FFE,我们的方法创新地结合了运动变化信息,从而显着改善了在跨外观条件下模型的性能。在流行的数据集Casia-B上,我们提出的运动步态比现有步态识别方法更好。

Gait recognition, which can realize long-distance and contactless identification, is an important biometric technology. Recent gait recognition methods focus on learning the pattern of human movement or appearance during walking, and construct the corresponding spatio-temporal representations. However, different individuals have their own laws of movement patterns, simple spatial-temporal features are difficult to describe changes in motion of human parts, especially when confounding variables such as clothing and carrying are included, thus distinguishability of features is reduced. In this paper, we propose the Motion Excitation Module (MEM) to guide spatio-temporal features to focus on human parts with large dynamic changes, MEM learns the difference information between frames and intervals, so as to obtain the representation of temporal motion changes, it is worth mentioning that MEM can adapt to frame sequences with uncertain length, and it does not add any additional parameters. Furthermore, we present the Fine Feature Extractor (FFE), which independently learns the spatio-temporal representations of human body according to different horizontal parts of individuals. Benefiting from MEM and FFE, our method innovatively combines motion change information, significantly improving the performance of the model under cross appearance conditions. On the popular dataset CASIA-B, our proposed Motion Gait is better than the existing gait recognition methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源