论文标题
签名多编码的色度索引的界限
Bounds for the chromatic index of signed multigraphs
论文作者
论文摘要
纸质研究签名的多编码的边缘色,并将香农和科尼格的经典定理扩展到签名的多编码。我们证明,签名的Multigraph $(g,σ_g)$的色度索引最多是$ \ lfloor \ frac {3} {2} {2}Δ(g)\ rfloor $。此外,平衡签名的多式$(h,σ_h)$的色度索引最多为$δ(h) + 1 $,并且具有色度索引$δ(h)$的平衡签名的多编码。
The paper studies edge-coloring of signed multigraphs and extends classical Theorems of Shannon and König to signed multigraphs. We prove that the chromatic index of a signed multigraph $(G,σ_G)$ is at most $\lfloor \frac{3}{2} Δ(G) \rfloor$. Furthermore, the chromatic index of a balanced signed multigraph $(H,σ_H)$ is at most $Δ(H) + 1$ and the balanced signed multigraphs with chromatic index $Δ(H)$ are characterized.