论文标题

多胎:现实世界中的民权诉讼摘要多种粒度

Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

论文作者

Shen, Zejiang, Lo, Kyle, Yu, Lauren, Dahlberg, Nathan, Schlanger, Margo, Downey, Doug

论文摘要

随着大型语言模型的出现,抽象性摘要的方法取得了长足的进步,从而在应用程序中有可能帮助知识工人处理笨拙的文档收集。一个这样的环境是民权诉讼交换所(CRLC)(https://clearinghouse.net),其中发布了有关大规模民权诉讼,服务律师,学者和公众的信息。如今,CRLC中的摘要需要对律师和法律专业的学生进行广泛的培训,这些律师和法律专业的学生花费数小时了解多个相关文件,以便产生重要事件和成果的高质量摘要。在这种持续的现实摘要工作的推动下,我们介绍了Multi-ile-Inlesum,这是由正在进行的CRLC写作中绘制的9,280个专家摘要的集合。鉴于源文档的长度,多文章介绍了一个具有挑战性的多文档摘要任务,通常每个情况超过200页。此外,多插图在其多个目标摘要中与其他数据集不同,每个数据集都处于不同的粒度(从一句“极端”摘要到超过五百个单词的多段落叙述)。我们提出了广泛的分析,表明,尽管培训数据(遵守严格的内容和样式指南)中的摘要很高,但最新的摘要模型在此任务上的表现较差。我们发布了多IMESUM,以进一步研究摘要方法以及促进应用程序的开发,以帮助CRLC的任务https://multilexsum.github.io。

With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源