论文标题

将基于图的Sybil检测方法解释为低通滤波

Interpreting Graph-based Sybil Detection Methods as Low-Pass Filtering

论文作者

Furutani, Satoshi, Shibahara, Toshiki, Akiyama, Mitsuaki, Aida, Masaki

论文摘要

在线社交网络(OSN)受到Sybil攻击的威胁,该攻击在OSN上创建了假帐户(也称为Sybils),并将其用于各种恶意活动。因此,SYBIL检测是OSN安全性的基本任务。大多数现有的SYBIL检测方法基于OSN的图形结构,并且最近提出了各种方法。但是,尽管几乎所有方法都在检测性能和稳健性方面进行了实验比较,但仍缺乏对它们的理论理解。在这项研究中,我们表明现有的基于图的Sybil检测方法可以在低通滤波的统一框架中解释。该框架使我们能够从两个角度从理论上比较和分析每种方法:过滤器内核属性和移位矩阵的光谱。我们的分析表明,每种方法的检测性能取决于低通滤波能够提取低频组件并去除嘈杂的高频组件。此外,根据分析,我们提出了一种新型的Sybil检测方法,称为Sybilheat。关于合成图和实际社交网络的数值实验表明,Sybilheat在具有各种结构属性的图表上表现良好。这项研究奠定了基于图的Sybil检测的理论基础,并可以更好地了解Sybil检测方法。

Online social networks (OSNs) are threatened by Sybil attacks, which create fake accounts (also called Sybils) on OSNs and use them for various malicious activities. Therefore, Sybil detection is a fundamental task for OSN security. Most existing Sybil detection methods are based on the graph structure of OSNs, and various methods have been proposed recently. However, although almost all methods have been compared experimentally in terms of detection performance and noise robustness, theoretical understanding of them is still lacking. In this study, we show that existing graph-based Sybil detection methods can be interpreted in a unified framework of low-pass filtering. This framework enables us to theoretically compare and analyze each method from two perspectives: filter kernel properties and the spectrum of shift matrices. Our analysis reveals that the detection performance of each method depends on how well low-pass filtering can extract low frequency components and remove noisy high frequency components. Furthermore, on the basis of the analysis, we propose a novel Sybil detection method called SybilHeat. Numerical experiments on synthetic graphs and real social networks demonstrate that SybilHeat performs consistently well on graphs with various structural properties. This study lays a theoretical foundation for graph-based Sybil detection and leads to a better understanding of Sybil detection methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源