论文标题
没有(C + 2) - 周期的丰富的C-Partite(C> 7)锦标赛的特征
A characterization of rich c-partite (c > 7) tournaments without (c + 2)-cycles
论文作者
论文摘要
令C为整数。 C-Partite锦标赛是完整的C-Partite图的方向。如果C-Partite锦标赛很强,则每个Partite套装至少有两个顶点。 1996年,郭和沃尔克曼(Guo and Volkmann)表征了所有丰富的C-Partite锦标赛的结构,而没有(C + 1)-Cycles,这解决了Bondy的问题。他们还提出了一个问题,即在某些k> 1的情况下,有没有(C + K)的富含C-Partite锦标赛的结构是什么。在本文中,我们回答了郭和沃尔克曼的问题,以k = 2。
Let c be an integer. A c-partite tournament is an orientation of a complete c-partite graph. A c-partite tournament is rich if it is strong, and each partite set has at least two vertices. In 1996, Guo and Volkmann characterized the structure of all rich c-partite tournaments without (c + 1)-cycles, which solved a problem by Bondy. They also put forward a problem that what the structure of rich c-partite tournaments without (c + k)-cycles for some k>1 is. In this paper, we answer the question of Guo and Volkmann for k = 2.