论文标题

通过同步激活耦合人造神经网络和人脑功能的视觉语义

Coupling Visual Semantics of Artificial Neural Networks and Human Brain Function via Synchronized Activations

论文作者

Zhao, Lin, Dai, Haixing, Wu, Zihao, Xiao, Zhenxiang, Zhang, Lu, Liu, David Weizhong, Hu, Xintao, Jiang, Xi, Li, Sheng, Zhu, Dajiang, Liu, Tianming

论文摘要

最初受生物神经网络(BNN)启发的人工神经网络(ANN)在许多任务中取得了巨大的成功,例如视觉表示学习。但是,由于缺乏有效的工具与两个不同的域,以及缺乏代表BNN中的视觉精神分子的一般有效框架(例如人类功能性脑网络(FBN))(FBN),ANN和BNN中的视觉表示之间是否存在语义相关性/联系。为了回答这个问题,我们提出了一个新型的计算框架,即同步激活(同步性),以基于自然主义的功能磁共振成像(NFMRI)数据,将人脑ANN和BNN之间的视觉表示空间和语义融合在一起。通过这种方法,我们能够以第一次从人类脑成像中得出的生物学上有意义的描述在ANN中注释神经元。我们在两个公开观看的NFMRI数据集上评估了同步操作框架。该实验证明了a)FBN中视觉表示与各种卷积神经网络(CNN)模型中的视觉表示之间的显着相关性和相似性; b)CNN的视觉表示与BNN的相似性与其在图像分类任务中的性能之间的密切关系。总体而言,我们的研究介绍了一个一般有效的范式,以融入ANN和BNNS,并为未来的研究提供新的见解,例如脑启发的人工智能。

Artificial neural networks (ANNs), originally inspired by biological neural networks (BNNs), have achieved remarkable successes in many tasks such as visual representation learning. However, whether there exists semantic correlations/connections between the visual representations in ANNs and those in BNNs remains largely unexplored due to both the lack of an effective tool to link and couple two different domains, and the lack of a general and effective framework of representing the visual semantics in BNNs such as human functional brain networks (FBNs). To answer this question, we propose a novel computational framework, Synchronized Activations (Sync-ACT), to couple the visual representation spaces and semantics between ANNs and BNNs in human brain based on naturalistic functional magnetic resonance imaging (nfMRI) data. With this approach, we are able to semantically annotate the neurons in ANNs with biologically meaningful description derived from human brain imaging for the first time. We evaluated the Sync-ACT framework on two publicly available movie-watching nfMRI datasets. The experiments demonstrate a) the significant correlation and similarity of the semantics between the visual representations in FBNs and those in a variety of convolutional neural networks (CNNs) models; b) the close relationship between CNN's visual representation similarity to BNNs and its performance in image classification tasks. Overall, our study introduces a general and effective paradigm to couple the ANNs and BNNs and provides novel insights for future studies such as brain-inspired artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源