论文标题

用火斗争:避免通过启动来避免DNN快捷方式

Fighting Fire with Fire: Avoiding DNN Shortcuts through Priming

论文作者

Wen, Chuan, Qian, Jianing, Lin, Jierui, Teng, Jiaye, Jayaraman, Dinesh, Gao, Yang

论文摘要

在跨越监督分类和顺序控制的应用程序中,据报道,深度学习发现了“快捷方式”解决方案,这些解决方案在数据分布的较小变化下灾难性地失败。在本文中,我们从经验上表明,可以通过提供从关键输入特征计算出的额外的“启动”功能(通常是粗糙的输出估算值)来诱使DNN诱发以避免捷径差。启动依赖于这些与任务相关的关键输入特征的近似域知识,在实际设置中通常很容易获得。例如,可以将最近的帧优先于过去的视频输入中,以进行视觉模仿学习,或者在背景像素上进行图像分类的明显前景。关于NICO图像分类,Mujoco连续控制和Carla自动驾驶,我们的启动策略要比几种流行的特征选择和数据增强的最先进方法要好得多。我们将这些经验发现与DNN优化的最新理论结果联系起来,从理论上讲,启动启动通过创建更好,更简单的快捷方式来分散优化器的注意力。

Across applications spanning supervised classification and sequential control, deep learning has been reported to find "shortcut" solutions that fail catastrophically under minor changes in the data distribution. In this paper, we show empirically that DNNs can be coaxed to avoid poor shortcuts by providing an additional "priming" feature computed from key input features, usually a coarse output estimate. Priming relies on approximate domain knowledge of these task-relevant key input features, which is often easy to obtain in practical settings. For example, one might prioritize recent frames over past frames in a video input for visual imitation learning, or salient foreground over background pixels for image classification. On NICO image classification, MuJoCo continuous control, and CARLA autonomous driving, our priming strategy works significantly better than several popular state-of-the-art approaches for feature selection and data augmentation. We connect these empirical findings to recent theoretical results on DNN optimization, and argue theoretically that priming distracts the optimizer away from poor shortcuts by creating better, simpler shortcuts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源