论文标题
分类矩阵因素化
Categorical matrix factorizations
论文作者
论文摘要
在本文中,对于任何整数d,我们提供了自然转换的D折基质因素化的纯粹分类结构。这恢复了由于Eisenbud而导致的通用环中常规元素的经典定义。我们在相关的三角类别之间探索一些天然功能,并表明当d = 2时,这些是充分而忠实的,在某些情况下是等效的。
In this paper we give a purely categorical construction of d-fold matrix factorizations of a natural transformation, for any even integer d. This recovers the classical definition of those for regular elements in commutative rings due to Eisenbud. We explore some natural functors between associated triangulated categories, and show that when d=2 these are full and faithful, and in some cases equivalences.