论文标题

非虚拟量子图图的相位散联混合物

Phase-covariant mixtures of non-unital qubit maps

论文作者

Siudzińska, Katarzyna

论文摘要

我们分析了相关的非积极量子图的凸组合。特别是,我们考虑了结合振幅阻尼,振幅阻尼和纯dephasing的地图的行为。我们表明,混合非积极通道会导致恢复统一性,而混合的交换图会导致非交换性。对于Markovian Semigroups的凸组合,我们证明了经典的不确定性不会破坏量子马尔可道。此外,与Pauli Channel案相反,只能通过混合两个Semigroups来恢复Semigroup。

We analyze convex combinations of non-unital qubit maps that are phase-covariant. In particular, we consider the behavior of maps that combine amplitude damping, inverse amplitude damping, and pure dephasing. We show that mixing non-unital channels can result in restoring the unitality, whereas mixing commutative maps can lead to non-commutativity. For the convex combinations of Markovian semigroups, we prove that classical uncertainties cannot break quantum Markovianity. Moreover, contrary to the Pauli channel case, the semigroup can be recovered only by mixing two other semigroups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源