论文标题

低延迟成像和启用洛拉的Cubesats的推断

Low-latency Imaging and Inference from LoRa-enabled CubeSats

论文作者

Gadre, Akshay, Kumar, Swarun, Manchester, Zachary

论文摘要

近年来,低成本立方体在低地球轨道中的迅速部署,主要用于研究,教育和地球观察。从捕获图像到地面上可用的时间,这些立方体中的绝大多数经历了显着的延迟(几个小时)。这主要是由于专用卫星地面站的可用性有限,这些卫星地面站往往笨重,租金昂贵。本文探讨了使用ISM频段中的Lora收音机来从Cubesats进行低延迟的下行链路通信,这主要是由于广泛的地面Lora基础设施的可用性以及对地面通信的最小干扰。但是,洛拉(Lora)的带宽有限,无法发送丰富的卫星地球图像 - 相反,Cubesats最多可以发送简短消息(几百字节)。 本文详细介绍了我们与团队发起的洛拉(Lora)启用Cubesat沟通的经验。我们提出了Vista,这是一种通信系统,它可以对Lora进行软件修改,并在商业Lora地面站上编码CUBESAT并解码,以允许传达卫星图像,并在这些图像上进行广泛的机器学习推论。这是通过编码卫星图像的结构,在其上执行的任务以及卫星信号的多普勒变化来告知的lora-channel感知图像来实现的。通过痕量驱动的仿真对VISTA进行详细评估,该效果具有Lora-Cibesat发射(2021年)的痕迹,显示了Lora Image PSNR的4.56 dB改善,而土地利用分类比这些图像提高了1.38倍。

Recent years have seen the rapid deployment of low-cost CubeSats in low-Earth orbit, primarily for research, education, and Earth observation. The vast majority of these CubeSats experience significant latency (several hours) from the time an image is captured to the time it is available on the ground. This is primarily due to the limited availability of dedicated satellite ground stations that tend to be bulky to deploy and expensive to rent. This paper explores using LoRa radios in the ISM band for low-latency downlink communication from CubeSats, primarily due to the availability of extensive ground LoRa infrastructure and minimal interference to terrestrial communication. However, the limited bandwidth of LoRa precludes rich satellite Earth images to be sent - instead, the CubeSats can at best send short messages (a few hundred bytes). This paper details our experience in communicating with a LoRa-enabled CubeSat launched by our team. We present Vista, a communication system that makes software modifications to LoRa encoding onboard a CubeSat and decoding on commercial LoRa ground stations to allow for satellite imagery to be communicated, as well as wide-ranging machine learning inference on these images. This is achieved through a LoRa-channel-aware image encoding that is informed by the structure of satellite images, the tasks performed on it, as well as the Doppler variation of satellite signals. A detailed evaluation of Vista through trace-driven emulation with traces from the LoRa-CubeSat launch (in 2021) shows 4.56 dB improvement in LoRa image PSNR and 1.38x improvement in land-use classification over those images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源