论文标题
多层域的适应车道检测
Multi-level Domain Adaptation for Lane Detection
论文作者
论文摘要
我们专注于在不同情况下在车道检测中桥接域差异,以大大降低自动驾驶的额外注释和重新训练成本。关键因素阻碍了跨域车道检测的性能提高,即常规方法仅着眼于像素损失,同时忽略了泳道的形状和位置先验。为了解决这个问题,我们提出了多级域Autaptation(MLDA)框架,这是一种在三个互补语义级别的像素,实例和类别的互补语义水平上处理跨域泳道检测的新观点。具体而言,在像素级别上,我们建议在自我训练中应用跨级置信度限制,以应对车道和背景的不平衡置信分布。在实例级别上,我们超越像素,将分段车道视为实例,并通过三胞胎学习促进目标域中的判别特征,这有效地重建了车道的语义环境,并有助于减轻特征混乱。在类别级别,我们提出了一个自适应域间嵌入模块,以在自适应过程中利用泳道的先验位置。在两个具有挑战性的数据集(即Tusimple和Culane)中,我们的方法将车道检测性能提高了很大的利润率,与最先进的域适应算法相比,精度分别提高了8.8%,F1得分分别提高了7.4%。
We focus on bridging domain discrepancy in lane detection among different scenarios to greatly reduce extra annotation and re-training costs for autonomous driving. Critical factors hinder the performance improvement of cross-domain lane detection that conventional methods only focus on pixel-wise loss while ignoring shape and position priors of lanes. To address the issue, we propose the Multi-level Domain Adaptation (MLDA) framework, a new perspective to handle cross-domain lane detection at three complementary semantic levels of pixel, instance and category. Specifically, at pixel level, we propose to apply cross-class confidence constraints in self-training to tackle the imbalanced confidence distribution of lane and background. At instance level, we go beyond pixels to treat segmented lanes as instances and facilitate discriminative features in target domain with triplet learning, which effectively rebuilds the semantic context of lanes and contributes to alleviating the feature confusion. At category level, we propose an adaptive inter-domain embedding module to utilize the position prior of lanes during adaptation. In two challenging datasets, ie TuSimple and CULane, our approach improves lane detection performance by a large margin with gains of 8.8% on accuracy and 7.4% on F1-score respectively, compared with state-of-the-art domain adaptation algorithms.