论文标题

接近线性$ \ VAREPSILON $ - 平面图的emulators

Near-Linear $\varepsilon$-Emulators for Planar Graphs

论文作者

Chang, Hsien-Chih, Krauthgamer, Robert, Tan, Zihan

论文摘要

我们研究距离的顶点稀疏,在平面图的设置中:给定平面图$ g $(具有边缘的重量)和$ k $终端顶点的子集,目标是构建一个$ \ varepsilon $ emulator,这是一个小平面图$ g'$,其中包含端子和范围$ 1+1+1+1+1+1+1+1+1+1+1+1+serves upers $ 1+1+1+serves upers。我们为接近线性尺寸$ \ tilde o(k/\ varepsilon^{o(1)})$的平面图构建了第一个$ \ varepsilon $ - emulators。就$ k $而言,这是对张,goranci和henzinger先前的二次上限的巨大改进,并在已知的二次二次下限范围以下(当$ \ varepsilon = 0 $时)中断了。此外,我们的模拟器可以在(接近)线性时间中计算,从而导致$(1+ \ varepsilon)$ - 近似算法,用于平面图上的基本优化问题,包括多个源最短路径,包括多个源的$(S,T)$ - $(S,T)$ - 切割,图形直径和动态距离。

We study vertex sparsification for distances, in the setting of planar graphs with distortion: Given a planar graph $G$ (with edge weights) and a subset of $k$ terminal vertices, the goal is to construct an $\varepsilon$-emulator, which is a small planar graph $G'$ that contains the terminals and preserves the distances between the terminals up to factor $1+\varepsilon$. We construct the first $\varepsilon$-emulators for planar graphs of near-linear size $\tilde O(k/\varepsilon^{O(1)})$. In terms of $k$, this is a dramatic improvement over the previous quadratic upper bound of Cheung, Goranci and Henzinger, and breaks below known quadratic lower bounds for exact emulators (the case when $\varepsilon=0$). Moreover, our emulators can be computed in (near-)linear time, which lead to fast $(1+\varepsilon)$-approximation algorithms for basic optimization problems on planar graphs, including multiple-source shortest paths, minimum $(s,t)$-cut, graph diameter, and dynamic distace oracle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源