论文标题

精心测量的网络线性动力系统(扩展版本)的可控性

Controllability of Coarsely Measured Networked Linear Dynamical Systems (Extended Version)

论文作者

Ghoroghchian, Nafiseh, Anguluri, Rajasekhar, Dasarathy, Gautam, Draper, Stark C.

论文摘要

我们考虑到网络结构的完整知识不可用,并且知识仅限于粗略摘要时,我们考虑了大规模线性网络动力学系统的可控性。我们提供条件下,通过(合成,减少)粗尺度系统的平均可控性可以很好地近似细尺度系统的平均可控性。为此,我们需要了解精细尺度网络的某些固有参数结构,这使这种类型的近似结构成为可能。因此,我们假设潜在的细尺度网络是由随机块模型(SBM)生成的 - 经常在社区检测中进行研究。然后,我们提供了一种算法,该算法直接使用SBM的粗摘要直接估算细尺度系统的平均可控性。我们的分析表明,基本结构(例如,内建立的社区)的必要性能够准确地量化从粗体特征的网络动力学中的可控性。我们还将我们的方法与减少阶方法的方法进行了比较,并突出了两者都可以互相胜过的制度。最后,我们提供了模拟,以确认网络大小和密度不同尺度的理论结果,以及捕获粗略摘要中保留了多少社区结构的参数。

We consider the controllability of large-scale linear networked dynamical systems when complete knowledge of network structure is unavailable and knowledge is limited to coarse summaries. We provide conditions under which average controllability of the fine-scale system can be well approximated by average controllability of the (synthesized, reduced-order) coarse-scale system. To this end, we require knowledge of some inherent parametric structure of the fine-scale network that makes this type of approximation possible. Therefore, we assume that the underlying fine-scale network is generated by the stochastic block model (SBM) -- often studied in community detection. We then provide an algorithm that directly estimates the average controllability of the fine-scale system using a coarse summary of SBM. Our analysis indicates the necessity of underlying structure (e.g., in-built communities) to be able to quantify accurately the controllability from coarsely characterized networked dynamics. We also compare our method to that of the reduced-order method and highlight the regimes where both can outperform each other. Finally, we provide simulations to confirm our theoretical results for different scalings of network size and density, and the parameter that captures how much community-structure is retained in the coarse summary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源