论文标题

合作野火覆盖范围和通过服务质量保证的多动力武器计划和跟踪

Multi-UAV Planning for Cooperative Wildfire Coverage and Tracking with Quality-of-Service Guarantees

论文作者

Seraj, Esmaeil, Silva, Andrew, Gombolay, Matthew

论文摘要

近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,虽然大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些UAV团队的能力来推理火灾的轨道(即位置和传播动态),以在时间范围内提供性能保证。在空中野火监测的问题上,我们提出了一个预测框架,该框架可以在多UAV团队中进行合作,以通过概率绩效保证进行协作现场覆盖和消防跟踪。我们的方法使无人机可以推断潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率的性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和撤退,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明实际的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最先进的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。

In recent years, teams of robot and Unmanned Aerial Vehicles (UAVs) have been commissioned by researchers to enable accurate, online wildfire coverage and tracking. While the majority of prior work focuses on the coordination and control of such multi-robot systems, to date, these UAV teams have not been given the ability to reason about a fire's track (i.e., location and propagation dynamics) to provide performance guarantee over a time horizon. Motivated by the problem of aerial wildfire monitoring, we propose a predictive framework which enables cooperation in multi-UAV teams towards collaborative field coverage and fire tracking with probabilistic performance guarantee. Our approach enables UAVs to infer the latent fire propagation dynamics for time-extended coordination in safety-critical conditions. We derive a set of novel, analytical temporal, and tracking-error bounds to enable the UAV-team to distribute their limited resources and cover the entire fire area according to the case-specific estimated states and provide a probabilistic performance guarantee. Our results are not limited to the aerial wildfire monitoring case-study and are generally applicable to problems, such as search-and-rescue, target tracking and border patrol. We evaluate our approach in simulation and provide demonstrations of the proposed framework on a physical multi-robot testbed to account for real robot dynamics and restrictions. Our quantitative evaluations validate the performance of our method accumulating 7.5x and 9.0x smaller tracking-error than state-of-the-art model-based and reinforcement learning benchmarks, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源