论文标题
时空的贝叶斯建模和聚类数据:意大利失业的应用
Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment
论文作者
论文摘要
时空的数据可以看作是时间序列的集合,根据特定的相邻结构在空间上相关。将时间和空间维度纳入统计模型,对基本理论框架以及实施有效的计算方法提出了挑战。我们建议使用条件自回旋先验的先验来包括时空随机效应,其中时间相关是通过自回旋平均分解和空间相关性通过遗传相邻结构的精确矩阵建模的。它们的关节分布构成了高斯马尔可夫随机场,其稀疏精度矩阵可以使用有效的采样算法。我们使用非参数先验将面积单元聚集,从而学习了面积单元的潜在分区。该模型的性能通过应用于意大利研究区域失业模式的应用评估。与其他空间和时空竞争者相比,提出的模型显示了更精确的估计值,从聚类中获得的其他信息则可以扩展对意大利省份失业率的经济解释。
Spatio-temporal areal data can be seen as a collection of time series which are spatially correlated according to a specific neighboring structure. Incorporating the temporal and spatial dimension into a statistical model poses challenges regarding the underlying theoretical framework as well as the implementation of efficient computational methods. We propose to include spatio-temporal random effects using a conditional autoregressive prior, where the temporal correlation is modeled through an autoregressive mean decomposition and the spatial correlation by the precision matrix inheriting the neighboring structure. Their joint distribution constitutes a Gaussian Markov random field, whose sparse precision matrix enables the usage of efficient sampling algorithms. We cluster the areal units using a nonparametric prior, thereby learning latent partitions of the areal units. The performance of the model is assessed via an application to study regional unemployment patterns in Italy. When compared to other spatial and spatio-temporal competitors, the proposed model shows more precise estimates and the additional information obtained from the clustering allows for an extended economic interpretation of the unemployment rates of the Italian provinces.