论文标题

分布式和联合学习的能源和碳足迹分析

An Energy and Carbon Footprint Analysis of Distributed and Federated Learning

论文作者

Savazzi, Stefano, Rampa, Vittorio, Kianoush, Sanaz, Bennis, Mehdi

论文摘要

古典和集中的人工智能(AI)方法要求将数据从生产者(传感器,机器)转移到饥饿的数据中心,从而在侵犯隐私的同时,由于计算和通信资源需求而引起的环境问题。缓解这种高能源成本的新兴替代方案建议在通常低功率的设备上有效分发或联合跨设备的学习任务。本文提出了一个新的框架,用于分析分布式和联合学习(FL)中的能量和碳足迹。提出的框架量化了香草FL方法和基于共识的完全分散方法的能量足迹和碳当量排放。我们讨论支持绿色FL设计并支撑其可持续性评估的最佳界限和运营点。分析了来自新兴5G行业的两项案例研究:它们量化了持续和强化学习设置的环境足迹,在这些培训过程中,定期重复培训过程以进行持续改进。在所有情况下,分布式学习的可持续性都取决于满足沟通效率和学习者人口规模的特定要求。考虑到目标工业应用的模型和数据足迹,还应将能源和测试精度交易。

Classical and centralized Artificial Intelligence (AI) methods require moving data from producers (sensors, machines) to energy hungry data centers, raising environmental concerns due to computational and communication resource demands, while violating privacy. Emerging alternatives to mitigate such high energy costs propose to efficiently distribute, or federate, the learning tasks across devices, which are typically low-power. This paper proposes a novel framework for the analysis of energy and carbon footprints in distributed and federated learning (FL). The proposed framework quantifies both the energy footprints and the carbon equivalent emissions for vanilla FL methods and consensus-based fully decentralized approaches. We discuss optimal bounds and operational points that support green FL designs and underpin their sustainability assessment. Two case studies from emerging 5G industry verticals are analyzed: these quantify the environmental footprints of continual and reinforcement learning setups, where the training process is repeated periodically for continuous improvements. For all cases, sustainability of distributed learning relies on the fulfillment of specific requirements on communication efficiency and learner population size. Energy and test accuracy should be also traded off considering the model and the data footprints for the targeted industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源