论文标题
具有复杂动态表型神经元网络网络的新一代还原方法
A new generation of reduction methods for networks of neurons with complex dynamic phenotypes
论文作者
论文摘要
神经元的尖峰网络的集体动力学对计算神经科学和网络科学都具有核心意义。在过去的几年中,已经开发了基于尖峰网络的精确减少(ER)的新一代神经种群模型。但是,这些努力中的大多数都仅限于具有简单动力学的神经元网络(例如,二次集成和火模型)。在这里,我们提出了二维Izhikevich神经元模型的基于电导的网络的扩展。我们采用绝热近似,这使我们能够分析地求解描述神经群体状态的演变,从而降低模型维度的连续性方程。我们通过表明我们得出的减少的平均场描述可以在定性和定量地描述具有不同电生理谱(常规触发,适应器,谐振器和III型)的宏观行为来验证我们的结果。最值得注意的是,我们将此技术应用于具有破裂动态的神经元网络的ER。
Collective dynamics of spiking networks of neurons has been of central interest to both computation neuroscience and network science. Over the past years a new generation of neural population models based on exact reductions (ER) of spiking networks have been developed. However, most of these efforts have been limited to networks of neurons with simple dynamics (e.g. the quadratic integrate and fire models). Here, we present an extension of ER to conductance-based networks of two-dimensional Izhikevich neuron models. We employ an adiabatic approximation, which allows us to analytically solve the continuity equation describing the evolution of the state of the neural population and thus to reduce model dimensionality. We validate our results by showing that the reduced mean-field description we derived can qualitatively and quantitatively describe the macroscopic behaviour of populations of two-dimensional QIF neurons with different electrophysiological profiles (regular firing, adapting, resonator and type III excitable). Most notably, we apply this technique to develop an ER for networks of neurons with bursting dynamics.