论文标题

许多世界的微积分

The Many-Worlds Calculus

论文作者

Chardonnet, Kostia, de Visme, Marc, Valiron, Benoît, Vilmart, Renaud

论文摘要

在本文中,我们探讨了两个单体结构之间的相互作用:用于配对的编码和添加剂的乘法结构之间的相互作用。我们提出了一个彩色支柱,以模拟该框架中的计算,其中选择是通过代数副作用参数化的:该模型可以支持常规测试,概率和非确定性分支以及量子分支,即叠加。 该图形语言配备了基于线性应用和方程式理论的典型语义。我们证明了语言是普遍的,并且相对于这种语义而言,方程式理论是完整的。

In this paper, we explore the interaction between two monoidal structures: a multiplicative one, for the encoding of pairing, and an additive one, for the encoding of choice. We propose a colored PROP to model computation in this framework, where the choice is parameterized by an algebraic side effect: the model can support regular tests, probabilistic and non-deterministic branching, as well as quantum branching, i.e. superposition. The graphical language comes equipped with a denotational semantics based on linear applications, and an equational theory. We prove the language to be universal, and the equational theory to be complete with respect to this semantics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源