论文标题

最大自动复杂性和无上下文的语言

Maximal automatic complexity and context-free languages

论文作者

Kjos-Hanssen, Bjørn

论文摘要

令$ a_n $表示非确定性自动复杂性,\ [ l_ {k,c} = \ {x \ in [k]^*:a_n(x)> | x |/c \}。 \]特别是,$ l_ {k,2} $是$ a_n $最大的所有$ k $ - ary单词的语言,而$ l_ {k,3} $在复杂和简单之间给出了粗糙的划分线。令$ \ mathbf {cfl} $表示由所有不含上下文的语言组成的复杂性类。虽然不知道$ l_ {2,2} $是无限的,但Kjos-Hanssen(2017)表明$ L_ {3,2} $是$ \ Mathbf {Cfl {Cfl} $ - Immune,但不是$ \ Mathbf {Cocfl {Cocfl} $。我们通过显示$ l_ {3,2} \ in \ mathbf {CoCfl} $来完成图片。 转向布尔电路的复杂性,我们表明$ l_ {2,3} $是$ \ mathbf {sac}^0 $ -Immune和$ \ Mathbf {sac}^0 $ -coimmune。这里$ \ mathbf {sac}^0 $表示复杂性类,由所有语言组成的所有语言组成,该语言由(不均匀)恒定深度电路,具有半无功能的Fanin。 至于算术电路,我们表明$ \ {x:a_n(x)> 1 \} \ not \ in \ oplus \ mathbf {sac}^0 $。特别是,$ \ mathbf {sac}^0 \ not \ subseteq \ oplus \ oplus \ mathbf {sac}^0 $,它解析了复杂性动物园的开放含义。

Let $A_N$ denote nondeterministic automatic complexity and \[ L_{k,c}=\{x\in [k]^* : A_N(x)> |x|/c\}. \] In particular, $L_{k,2}$ is the language of all $k$-ary words for which $A_N$ is maximal, while $L_{k,3}$ gives a rough dividing line between complex and simple. Let $\mathbf{CFL}$ denote the complexity class consisting of all context-free languages. While it is not known that $L_{2,2}$ is infinite, Kjos-Hanssen (2017) showed that $L_{3,2}$ is $\mathbf{CFL}$-immune but not $\mathbf{coCFL}$-immune. We complete the picture by showing that $L_{3,2}\not\in\mathbf{coCFL}$. Turning to Boolean circuit complexity, we show that $L_{2,3}$ is $\mathbf{SAC}^0$-immune and $\mathbf{SAC}^0$-coimmune. Here $\mathbf{SAC}^0$ denotes the complexity class consisting of all languages computed by (non-uniform) constant-depth circuits with semi-unbounded fanin. As for arithmetic circuits, we show that $\{x:A_N(x)>1\}\not\in\oplus\mathbf{SAC}^0$. In particular, $\mathbf{SAC}^0\not\subseteq\oplus \mathbf{SAC}^0$, which resolves an open implication from the Complexity Zoo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源