论文标题

自维持运输能源系统中锂离子电池源的电化学参数识别

Electrochemical Parameter Identification for Lithium-ion Battery Sources in Self-Sustained Transportation Energy Systems

论文作者

Gu, Yuxuan, Wang, Jianxiao, Chen, Yuanbo, Zheng, Kedi, Deng, Zhongwei, Chen, Qixin

论文摘要

锂离子电池(LIB)资源在自我维持的运输能源系统中发挥了重要作用,并且在过去几年中已被广泛部署。要实现可靠的电池维护,必须确定其电化学参数。但是,电池模型包含许多参数,而可测量的状态仅是电流和电压,从而固有地诱导了一个识别问题。提出了一种参数识别方法,包括实验,模型和算法。电化学参数首先根据物理特性进行手动分组,并分配给两个测序测试以进行识别。称为准静态测试和动态测试的两个测试在实现时被压缩。开发了适当的优化模型和面向灵敏度的逐步(SSO)优化算法,以有效地搜索最佳参数。通常,将SOBOL方法应用于进行灵敏度分析。基于灵敏度索引,SSO算法可以使识别过程中不同参数的混合影响分离。为了进行验证,在不同的生命阶段进行了典型的NCM811电池的数值实验。建议的方法节省了大约一半的时间找到正确的参数值。与电池降解有关的关键参数的识别精度可能超过95 \%。案例研究结果表明,所识别的参数不仅可以提高电池模型的准确性,而且还可以用作电池SOH的指标。

Lithium-ion battery (LIB) sources have played an essential role in self-sustained transportation energy systems and have been widely deployed in the last few years. To realize reliable battery maintenance, identifying its electrochemical parameters is necessary. However, the battery model contains many parameters while the measurable states are only the current and voltage, inducing the identification inherently an ill-conditioned problem. A parameter identification approach is proposed, including the experiment, model, and algorithm. Electrochemical parameters are first grouped manually based on the physical properties and assigned to two sequenced tests for identification. The two tests named the quasi-static test and the dynamic test, are compressed on time for practical implementation. Proper optimization models and a sensitivity-oriented stepwise (SSO) optimization algorithm are developed to search for the optimal parameters efficiently. Typically, the Sobol method is applied to conduct the sensitivity analysis. Based on the sensitivity indexes, the SSO algorithm can decouple the mixed impacts of different parameters during the identification. For validation, numerical experiments on a typical NCM811 battery at different life stages are conducted. The proposed approach saves about half the time finding the proper parameter value. The identification accuracy of crucial parameters related to battery degradation can exceed 95\%. Case study results indicate that the identified parameters can not only improve the accuracy of the battery model but also be used as the indicator of the battery SOH.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源