论文标题

dirac生成courant代数的操作员

Dirac generating operators of split Courant algebroids

论文作者

Cai, Liqiang, Chen, Zhuo, Lang, Honglei, Xiang, Maosong

论文摘要

给定一个向量捆绑包$ a $在平滑的歧管上$ m $上,以使线束的平方根$ \ mathcal {l} $的线束$ \ wedge^{\ mathrm {top}} a^\ ast \ ast \ ast \ ast \ ast \ wedge \ wedge^wedge^{\ mathrm {\ top}}伪euclidean vector bundle $(e = a \ oplus a^\ ast,\ langle \ cdot,\ cdot \ rangle)$,承认一个旋转纺纱$ \ wedge^\ wedge^\ bullet a \ ot a \ ot a \ ot a \ otimimimimimimimimimime \ nathcal {l} $,其部分可以被散布的空间,该杂志的空间是贝尔氏群落的, $ a^\ ast [1] $。我们在Alekseev和Xu引入的$ a \ oplus a^\ ast $上,对分裂的代数(或原始晶状体)结构进行了明确的结构。我们还证明,狄拉克生成操作员的正方形产生了分裂的代数代数的不变性。

Given a vector bundle $A$ over a smooth manifold $M$ such that the square root $\mathcal{L}$ of the line bundle $\wedge^{\mathrm{top}}A^\ast \otimes \wedge^{\mathrm{top}}T^\ast M$ exists, the Clifford bundle associated to the split pseudo-Euclidean vector bundle $(E = A \oplus A^\ast, \langle \cdot, \cdot \rangle)$, admits a spinor bundle $\wedge^\bullet A \otimes \mathcal{L}$, whose section space can be thought of as that of Berezinian half-densities of the graded manifold $A^\ast[1]$. We give an explicit construction of Dirac generating operators of split Courant algebroid (or proto-bialgebroid) structures on $A \oplus A^\ast$ introduced by Alekseev and Xu. We also prove that the square of the Dirac generating operator gives rise to an invariant of the split Courant algebroid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源