论文标题

没有辅助信息的深层生成模型的可识别性

Identifiability of deep generative models without auxiliary information

论文作者

Kivva, Bohdan, Rajendran, Goutham, Ravikumar, Pradeep, Aragam, Bryon

论文摘要

我们证明了(a)具有通用近似功能的广泛的深层变量模型的可识别性,并且(b)是通常在实践中使用的变异自动编码器的解码器。与现有工作不同,我们的分析不需要弱监督,辅助信息或潜在空间中的条件。具体来说,我们表明,对于具有通用近似功能的广泛生成(即无监督的)模型,侧面信息$ u $是不需要的:我们证明了整个生成模型的可识别性,在我们不观察$ u $的情况下,仅观察数据$ x $。我们考虑的模型匹配实践中使用的自动编码器体系结构,该体系结构利用了潜在空间中的混合先验,以及编码器中的relu/likey-relu激活,例如VADE和MFC-VAE。我们的主要结果是一个可识别性层次结构,它显着概括了先前的工作,并揭示了不同的假设如何导致可识别性的“优势”不同,并在特殊情况下包括具有各向异性高斯先验的某些“香草” VAE。例如,我们最薄弱的结果确定了(无监督的)可识别性,直到仿射转化,因此部分解决了关于先前工作中提出的模型可识别性的开放问题。这些理论结果通过模拟和真实数据的实验增强。

We prove identifiability of a broad class of deep latent variable models that (a) have universal approximation capabilities and (b) are the decoders of variational autoencoders that are commonly used in practice. Unlike existing work, our analysis does not require weak supervision, auxiliary information, or conditioning in the latent space. Specifically, we show that for a broad class of generative (i.e. unsupervised) models with universal approximation capabilities, the side information $u$ is not necessary: We prove identifiability of the entire generative model where we do not observe $u$ and only observe the data $x$. The models we consider match autoencoder architectures used in practice that leverage mixture priors in the latent space and ReLU/leaky-ReLU activations in the encoder, such as VaDE and MFC-VAE. Our main result is an identifiability hierarchy that significantly generalizes previous work and exposes how different assumptions lead to different "strengths" of identifiability, and includes certain "vanilla" VAEs with isotropic Gaussian priors as a special case. For example, our weakest result establishes (unsupervised) identifiability up to an affine transformation, and thus partially resolves an open problem regarding model identifiability raised in prior work. These theoretical results are augmented with experiments on both simulated and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源