论文标题

对物理知识神经网络中的故障模式的批判性调查

Critical Investigation of Failure Modes in Physics-informed Neural Networks

论文作者

Basir, Shamsulhaq, Senocak, Inanc

论文摘要

科学机器学习的最新著作对将神经网络应用于部分微分方程(PDE)的应用恢复了兴趣。一种流行的方法是将管理PDE的残留形式及其边界条件汇总为训练神经网络的复合目标/损失函数的软惩罚,这通常被称为物理信息信息信息信息,即具有物理信息的神经网络(PINN)。在本研究中,我们可视化学习参数的损失景观和分布,并解释目标函数的这种特殊表述可能会阻碍甚至在处理挑战性目标解决方案时阻碍收敛的方式。我们构建了一个纯粹的数据驱动损失函数,该损失函数既由边界损耗和域损耗组成。使用此数据驱动的损耗函数,并单独使用物理信息损失函数,然后我们使用相同的体系结构训练两个神经网络模型。我们表明,边界和域损耗项之间无与伦比的尺度是绩效差的罪魁祸首。此外,我们评估了两种椭圆形问题的性能,具有日益复杂的目标解决方案。基于我们对它们的损失景观景观和学到的参数分布的分析,我们观察到具有复合目标功能配方的物理信息的神经网络会产生高度非convex损失表面,这些损失表面很难优化,并且更容易探讨消失梯度的问题。

Several recent works in scientific machine learning have revived interest in the application of neural networks to partial differential equations (PDEs). A popular approach is to aggregate the residual form of the governing PDE and its boundary conditions as soft penalties into a composite objective/loss function for training neural networks, which is commonly referred to as physics-informed neural networks (PINNs). In the present study, we visualize the loss landscapes and distributions of learned parameters and explain the ways this particular formulation of the objective function may hinder or even prevent convergence when dealing with challenging target solutions. We construct a purely data-driven loss function composed of both the boundary loss and the domain loss. Using this data-driven loss function and, separately, a physics-informed loss function, we then train two neural network models with the same architecture. We show that incomparable scales between boundary and domain loss terms are the culprit behind the poor performance. Additionally, we assess the performance of both approaches on two elliptic problems with increasingly complex target solutions. Based on our analysis of their loss landscapes and learned parameter distributions, we observe that a physics-informed neural network with a composite objective function formulation produces highly non-convex loss surfaces that are difficult to optimize and are more prone to the problem of vanishing gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源