论文标题

如何在实践中评估值得信赖的AI

How to Assess Trustworthy AI in Practice

论文作者

Zicari, Roberto V., Amann, Julia, Bruneault, Frédérick, Coffee, Megan, Düdder, Boris, Hickman, Eleanore, Gallucci, Alessio, Gilbert, Thomas Krendl, Hagendorff, Thilo, van Halem, Irmhild, Hildt, Elisabeth, Holm, Sune, Kararigas, Georgios, Kringen, Pedro, Madai, Vince I., Mathez, Emilie Wiinblad, Tithi, Jesmin Jahan, Vetter, Dennis, Westerlund, Magnus, Wurth, Renee

论文摘要

该报告是对z-启动$^{\ small {\ circledr}} $的方法论反思。 z-inspection $^{\ small {\ circledr}} $是一个整体过程,用于评估AI生命周期不同阶段的基于AI的技术的可信度。它尤其是通过阐述社会技术情景来识别和讨论道德问题和紧张局势。它使用欧盟一般的高级专家小组(欧盟HLEG)可信赖的AI指南。该报告说明了AI研究人员和AI从业人员如何在实践中应用欧盟HLEG的AI指南。我们分享从进行一系列独立评估中学到的经验教训,以评估医疗保健中AI系统的可信度。我们还分享了有关如何确保在AI系统的整个生命周期中确保严格值得信赖的AI评估的关键建议和实用建议。

This report is a methodological reflection on Z-Inspection$^{\small{\circledR}}$. Z-Inspection$^{\small{\circledR}}$ is a holistic process used to evaluate the trustworthiness of AI-based technologies at different stages of the AI lifecycle. It focuses, in particular, on the identification and discussion of ethical issues and tensions through the elaboration of socio-technical scenarios. It uses the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI. This report illustrates for both AI researchers and AI practitioners how the EU HLEG guidelines for trustworthy AI can be applied in practice. We share the lessons learned from conducting a series of independent assessments to evaluate the trustworthiness of AI systems in healthcare. We also share key recommendations and practical suggestions on how to ensure a rigorous trustworthy AI assessment throughout the life-cycle of an AI system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源