论文标题

具有可变体积分数的孪晶的能量最小化方法

An energy minimization approach to twinning with variable volume fraction

论文作者

Conti, Sergio, Kohn, Robert, Misiats, Oleksandr

论文摘要

在经历马氏体相变的材料中,宏观载荷通常会导致弹性域的产生和/或重排。本文考虑了一个由两个马氏体变体制成的单晶平板的示例。当将平板弯曲时,这两个变体形成了一个特征性的微观结构,我们喜欢称``具有可变体积分数的孪晶。''。 al。使用由INTL制成的条探索了此示例,提供了有关其观察到的微观结构的大量细节。在这里,我们提供了一个基于能量最小化的模型,该模型是由其帐户激励的。它使用几何线性弹性,并将相边界视为尖锐的接口。为简单起见,我们考虑了某些Dirichlet或Neumann边界条件,而不是确切地对实验性和边界条件进行建模,其效果是需要弯曲。这导致了某些非线性(和非凸)变异问题,这些问题代表了弹性加上表面能的最小化(以及在Neumann边界条件的情况下,负载所做的工作)。我们的结果确定了每个变异问题的最小值相对于表面能密度的尺度。通过证明上限和下限以相同的方式来确定结果。上限是基于ANSATZ的,提供了有关某些(几乎)最佳微结构的完整详细信息。下限不含Ansatz,因此他们解释了为什么这两个阶段没有其他排列可能会更好。

In materials that undergo martensitic phase transformation, macroscopic loading often leads to the creation and/or rearrangement of elastic domains. This paper considers an example {involving} a single-crystal slab made from two martensite variants. When the slab is made to bend, the two variants form a characteristic microstructure that we like to call ``twinning with variable volume fraction.'' Two 1996 papers by Chopra et. al. explored this example using bars made from InTl, providing considerable detail about the microstructures they observed. Here we offer an energy-minimization-based model that is motivated by their account. It uses geometrically linear elasticity, and treats the phase boundaries as sharp interfaces. For simplicity, rather than model the experimental forces and boundary conditions exactly, we consider certain Dirichlet or Neumann boundary conditions whose effect is to require bending. This leads to certain nonlinear (and nonconvex) variational problems that represent the minimization of elastic plus surface energy (and the work done by the load, in the case of a Neumann boundary condition). Our results identify how the minimum value of each variational problem scales with respect to the surface energy density. The results are established by proving upper and lower bounds that scale the same way. The upper bounds are ansatz-based, providing full details about some (nearly) optimal microstructures. The lower bounds are ansatz-free, so they explain why no other arrangement of the two phases could be significantly better.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源