论文标题
来自时空光谱特征图像的脑电图数据的深度表示
Deep representation of EEG data from Spatio-Spectral Feature Images
论文作者
论文摘要
与常规数据(例如自然图像,音频和语音)不同,原始的多通道脑电图(EEG)数据很难解释。现代深层神经网络在脑电图研究中显示出令人鼓舞的结果,但是由于脑折叠结构的差异,在受试者之间发现脑电图数据的强大不变表示仍然是一个挑战。因此,希望脑电图数据的不变表示是可以提高我们对大脑活动的理解并在转移学习过程中有效使用它们。在本文中,我们提出了一种方法,通过利用记录电极之间的空间关系并在时空光谱特征图像中编码它们,以了解脑电图数据的深度表示。我们使用来自Phyaat数据集的多通道EEG信号进行听觉任务,并单独培训25个受试者的卷积神经网络(CNN)。之后,我们生成的输入模式可以激活所有受试者的深神经元。生成的模式可以看作是不同空间区域中大脑活动的图。我们的分析揭示了与不同任务相关的特定大脑区域的存在。还确定了着眼于较大区域和高级功能的低级功能,该功能还针对较小且非常具体的区域集群。有趣的是,尽管活动出现在不同地区,但在不同主题中发现了类似的模式。我们的分析还揭示了跨受试者的常见大脑区域,可以用作广义表示。我们提出的方法使我们能够找到更多可解释的脑电图数据,这些表示可以进一步用于有效的转移学习。
Unlike conventional data such as natural images, audio and speech, raw multi-channel Electroencephalogram (EEG) data are difficult to interpret. Modern deep neural networks have shown promising results in EEG studies, however finding robust invariant representations of EEG data across subjects remains a challenge, due to differences in brain folding structures. Thus, invariant representations of EEG data would be desirable to improve our understanding of the brain activity and to use them effectively during transfer learning. In this paper, we propose an approach to learn deep representations of EEG data by exploiting spatial relationships between recording electrodes and encoding them in a Spatio-Spectral Feature Images. We use multi-channel EEG signals from the PhyAAt dataset for auditory tasks and train a Convolutional Neural Network (CNN) on 25 subjects individually. Afterwards, we generate the input patterns that activate deep neurons across all the subjects. The generated pattern can be seen as a map of the brain activity in different spatial regions. Our analysis reveals the existence of specific brain regions related to different tasks. Low-level features focusing on larger regions and high-level features focusing on a smaller and very specific cluster of regions are also identified. Interestingly, similar patterns are found across different subjects although the activities appear in different regions. Our analysis also reveals common brain regions across subjects, which can be used as generalized representations. Our proposed approach allows us to find more interpretable representations of EEG data, which can further be used for effective transfer learning.