论文标题

可视化和理解对比度学习

Visualizing and Understanding Contrastive Learning

论文作者

Sammani, Fawaz, Joukovsky, Boris, Deligiannis, Nikos

论文摘要

对比学习已经彻底改变了计算机视野的领域,从未标记的数据中学习丰富的表示,这很好地推广到了各种视觉任务。因此,解释这些方法并了解其内部工作机制已经变得越来越重要。鉴于对比模型经过相互依存和相互作用的输入训练,并旨在通过数据增强来学习不变性,因此现有的解释单图像系统(例如,图像分类模型)的方法不足,因为它们无法解决这些因素,并且通常假设独立输入。此外,缺乏旨在评估解释对的评估指标,并且没有进行分析研究来研究用于解释对比度学习的不同技术的有效性。在这项工作中,我们设计了视觉解释方法,有助于从成对的图像中理解相似性学习任务。我们进一步调整了现有的指标,用于评估图像分类系统的视觉解释,以适应一对解释,并通过这些指标评估我们提出的方法。最后,我们对对比度学习的视觉解释方法进行了详尽的分析,建立了与下游任务的相关性,并证明了我们研究其优点和缺点的方法的潜力。

Contrastive learning has revolutionized the field of computer vision, learning rich representations from unlabeled data, which generalize well to diverse vision tasks. Consequently, it has become increasingly important to explain these approaches and understand their inner workings mechanisms. Given that contrastive models are trained with interdependent and interacting inputs and aim to learn invariance through data augmentation, the existing methods for explaining single-image systems (e.g., image classification models) are inadequate as they fail to account for these factors and typically assume independent inputs. Additionally, there is a lack of evaluation metrics designed to assess pairs of explanations, and no analytical studies have been conducted to investigate the effectiveness of different techniques used to explaining contrastive learning. In this work, we design visual explanation methods that contribute towards understanding similarity learning tasks from pairs of images. We further adapt existing metrics, used to evaluate visual explanations of image classification systems, to suit pairs of explanations and evaluate our proposed methods with these metrics. Finally, we present a thorough analysis of visual explainability methods for contrastive learning, establish their correlation with downstream tasks and demonstrate the potential of our approaches to investigate their merits and drawbacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源