论文标题
Bloch-Torrey操作员的光谱分支点
Spectral branch points of the Bloch-Torrey operator
论文作者
论文摘要
我们研究了非热门运算符的特征,即,光谱分支点的存在(也称为异常或水平的交叉点),在该点上,两个(或许多)特征模量崩溃到了单个特征模式上,从而松散了其完整性。此类分支点是通用的,并且在操作员的光谱中产生非分析性,进而导致基于特征值和特征模式的扰动扩展的有限收敛半径,即使与遗传者相关。我们从考虑$ 2 \ times 2 $矩阵的情况下对这种现象的教学介绍开始,并解释了如何将对更一般差异操作员的分析降低到这种情况下。我们提出了一种有效的数值算法来在复杂平面中找到光谱分支点。然后使用该算法显示在Bloch-torrey操作员$ - \ nabla^2-IgX $的光谱中的频谱分支点的出现,该光谱在扩散和进步下控制了核磁化的时间演化。我们讨论了它们的数学特性以及对一般有限域中扩散核磁共振实验的物理意义。
We investigate the peculiar feature of non-Hermitian operators, namely, the existence of spectral branch points (also known as exceptional or level crossing points), at which two (or many) eigenmodes collapse onto a single eigenmode and thus loose their completeness. Such branch points are generic and produce non-analyticities in the spectrum of the operator, which, in turn, result in a finite convergence radius of perturbative expansions based on eigenvalues and eigenmodes that can be relevant even for Hermitian operators. We start with a pedagogic introduction to this phenomenon by considering the case of $2\times 2$ matrices and explaining how the analysis of more general differential operators can be reduced to this setting. We propose an efficient numerical algorithm to find spectral branch points in the complex plane. This algorithm is then employed to show the emergence of spectral branch points in the spectrum of the Bloch-Torrey operator $-\nabla^2 - igx$, which governs the time evolution of the nuclear magnetization under diffusion and precession. We discuss their mathematical properties and physical implications for diffusion nuclear magnetic resonance experiments in general bounded domains.