论文标题

Agmon估算了Schrödinger操作员的图表

An Agmon estimate for Schrödinger operators on Graphs

论文作者

Steinerberger, Stefan

论文摘要

Agmon估计表明,schrödinger操作员的特征函数,$ -Δϕ+ v ϕ = e ϕ $,在“经典禁止”区域中呈指数衰减,其中电势超过能量水平$ \ left $ \ left \ eft \ {x:v(x):v(x)> e \ right \ right \} $。此外,$ | ϕ(x)| $的大小是根据$ x $和允许区域之间的加权(agmon)距离界定的。当$-δ$被图形laplacian $ l = d-a $取代时,我们会在图形上得出这样的陈述:我们确定了一个明确的agmon公制,并证明了在agmon距离方面的刻度衰减估计值。

The Agmon estimate shows that eigenfunctions of Schrödinger operators, $ -Δϕ+ V ϕ= E ϕ$, decay exponentially in the `classically forbidden' region where the potential exceeds the energy level $\left\{x: V(x) > E \right\}$. Moreover, the size of $|ϕ(x)|$ is bounded in terms of a weighted (Agmon) distance between $x$ and the allowed region. We derive such a statement on graphs when $-Δ$ is replaced by the Graph Laplacian $L = D-A$: we identify an explicit Agmon metric and prove a pointwise decay estimate in terms of the Agmon distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源