论文标题

标题为“和间隙零材料”的浮雕工程

Floquet engineering of titled and gapped Dirac materials

论文作者

Iurov, Andrii, Zhemchuzhna, Liubov, Gumbs, Godfrey, Huang, Danhong, Blaise, Kathy, Ejiogu, Chinedu

论文摘要

我们已经建立了一种严格的理论形式主义,用于Floquet Engineering,或者调查并最终调整二硫化钼的大多数至关重要的电子特性(1T $^\ Prime $ -MOS $ _2 $),通过在异地方面采用外部高频调味料。最近证明,单层半导体1T $^\ prime $ -mos $ _2 $可能假设一个扭曲的四方结构,表现出可调且散发的旋转旋转和谷极偏置的千极式dirac Bandstructure。从电子产品的角度来看,1t $^\ prime $ -mos $ _2 $是技术上最有前途的纳米材料之一,也是已经著名的过渡金属二色构化家族的新颖代表。所获得的穿着状态在很大程度上取决于所施加的辐射的极化,并反映了非辐照材料的初始低能汉密尔顿人的全部复杂性。我们已经计算并分析了所获得的电子装饰状态,用于围场的线性和圆形类型的偏振,重点是它们的对称特性,各向异性,倾斜和带隙以及拓扑特征。由于众所周知,圆形极化的敷料场会引起过渡到新的状态,具有破裂的时间反转对称性和非零的Chern数,因此这些在拓扑上的非平凡阶段的组合以及它们之间的过渡可能会揭示出一些真正独特且早期未知的现象。

We have established a rigorous theoretical formalism for Floquet engineering, or investigating and eventually tailoring most crucial electronic properties of tetragonal molybdenum disulfide (1T$^\prime$-MoS$_2$), by applying an external high-frequency dressing field in the off-resonant regime. It was recently demonstrated that monolayer semiconducting1T$^\prime$-MoS$_2$ may assume a distorted tetragonal structure which exhibits tunable and gapped spin- and valley-polarized tilted Dirac bandstructure. From the viewpoint of electronics, 1T$^\prime$-MoS$_2$ is one of the most technologically promising nanomaterials and a novel representative of an already famous family of transition metal dichalcogenides. The obtained dressed states strongly depend on the polarization of the applied irradiation and reflect the full complexity of the initial low-energy Hamiltonian of non-irradiated material. We have calculated and analyzed the obtained electron dressed states for linear and circular types of the polarization of the applied field focusing on their symmetrical properties, anisotropy, tilting and bandgaps, as well as topological signatures. Since a circularly polarized dressing field is also known to induce a transition into a new state with broken time-reversal symmetry and a non-zero Chern number, the combination of these topologically non-trivial phases and transitions between them could reveal some truly unique and earlier unknown phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源