论文标题
在高光谱图像上使用转移学习的地形分类:比较研究
Terrain Classification using Transfer Learning on Hyperspectral Images: A Comparative study
论文作者
论文摘要
与RGB图像相比,高光谱图像包含更多数量的通道,因此包含有关图像中实体的更多信息。卷积神经网络(CNN)和多层感知器(MLP)已被证明是一种有效的图像分类方法。但是,他们遭受了长期训练时间和大量标记数据的要求,以达到预期的结果。在处理高光谱图像时,这些问题变得更加复杂。为了减少训练时间并减少对大型标记数据集的依赖性,我们建议使用转移学习方法。使用PCA将高光谱数据集预处理到较低的维度,然后将深度学习模型应用于分类。然后,转移学习模型将使用该模型学到的功能来解决看不见的数据集上的新分类问题。进行了CNN和多个MLP体系结构模型的详细比较,以确定最适合目标的最佳体系结构。结果表明,层的缩放并不总是会导致准确性的提高,但通常会导致过度拟合,并增加训练时间。通过应用转移学习方法,训练时间更大程度地减少了,而不是通过直接在大型数据集中训练新模型来解决问题,而不会影响准确性。
A Hyperspectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. The convolutional neural network (CNN) and the Multi-Layer Perceptron (MLP) have been proven to be an effective method of image classification. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyperspectral images. To decrease the training time and reduce the dependence on large labeled dataset, we propose using the method of transfer learning. The hyperspectral dataset is preprocessed to a lower dimension using PCA, then deep learning models are applied to it for the purpose of classification. The features learned by this model are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to overfitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large datasets, without much affecting the accuracy.