论文标题

数据驱动的符号抽象的合成具有保证的信心

Data-Driven Synthesis of Symbolic Abstractions with Guaranteed Confidence

论文作者

Lavaei, Abolfazl, Frazzoli, Emilio

论文摘要

在这项工作中,我们为具有未知动力学的离散时间确定性控制系统构建有限抽象(又称符号模型)的数据驱动方法。我们利用所谓的交替分配函数(ABF)作为每个未知系统及其符号模型之间的关系,以量化两个系统的状态行为之间的错配。因此,人们可以利用我们提出的结果对符号模型进行正式验证和综合,然后将结果归还未知的原始系统。在数据驱动的设置中,我们首先施放将ABF构造为可靠优化程序(ROP)的所需条件。由于ROP的约束中存在未知模型,因此无法解决所提供的ROP。为了解决这个困难,我们从未知系统的轨迹中收集有限数量的数据,并提出了与原始ROP相对应的方案优化程序(SOP)。通过在SOP和ROP的最佳值之间建立概率关系,我们基于数据数量和所需的置信度级别在未知系统及其符号模型之间正式构建ABF。我们在两个物理案例研究中验证了我们的数据驱动结果的有效性,该案例研究具有未知模型,包括(i)直流电动机和(ii)非线性喷气发动机压缩机。我们从数据的适当替代品中构建了符号模型,并合成在无限时间范围内安全集中保持未知系统状态的策略,并具有一些保证的置信度。

In this work, we propose a data-driven approach for the construction of finite abstractions (a.k.a., symbolic models) for discrete-time deterministic control systems with unknown dynamics. We leverage notions of so-called alternating bisimulation functions (ABF), as a relation between each unknown system and its symbolic model, to quantify the mismatch between state behaviors of two systems. Accordingly, one can employ our proposed results to perform formal verification and synthesis over symbolic models and then carry the results back over unknown original systems. In our data-driven setting, we first cast the required conditions for constructing ABF as a robust optimization program (ROP). Solving the provided ROP is not tractable due to the existence of unknown models in the constraints of ROP. To tackle this difficulty, we collect finite numbers of data from trajectories of unknown systems and propose a scenario optimization program (SOP) corresponding to the original ROP. By establishing a probabilistic relation between optimal values of SOP and ROP, we formally construct ABF between unknown systems and their symbolic models based on the number of data and a required confidence level. We verify the effectiveness of our data-driven results over two physical case studies with unknown models including (i) a DC motor and (ii) a nonlinear jet engine compressor. We construct symbolic models from data as appropriate substitutes of original systems and synthesize policies maintaining states of unknown systems in a safe set within infinite time horizons with some guaranteed confidence levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源