论文标题
图神经网络辅助MU-MIMO探测器
Graph Neural Network Aided MU-MIMO Detectors
论文作者
论文摘要
多用户多输入多输出(MU-MIMO)系统可用于满足5G和超越网络的高吞吐量要求。基站在上行链路MU-MIMO系统中为许多用户提供服务,从而导致多用户干扰(MUI)。设计用于处理强大MUI的高性能探测器具有挑战性。本文分析了最先进的消息传递(MP)检测器中使用高MUI的后验分布近似引起的性能降解。我们开发了一个基于图神经网络的框架,以微调MP检测器的腔分布,从而改善MP检测器中的后验分布近似。然后,我们提出了两个基于神经网络的新型检测器,这些检测器分别依赖于期望传播(EP)和贝叶斯平行干扰取消(BPIC),分别称为GEPNET和GPICNET探测器。 GEPNET检测器可最大化检测性能,而GPICNET检测器平衡了性能和复杂性。我们提供了置换量比属性的证明,即使在具有动态变化的用户数量的系统中,也只能对检测器进行一次培训。仿真结果表明,所提出的GEPNET检测器性能在各种配置中接近最大似然性能,而GPICNET检测器将BPIC检测器的多重增益加倍。
Multi-user multiple-input multiple-output (MU-MIMO) systems can be used to meet high throughput requirements of 5G and beyond networks. A base station serves many users in an uplink MU-MIMO system, leading to a substantial multi-user interference (MUI). Designing a high-performance detector for dealing with a strong MUI is challenging. This paper analyses the performance degradation caused by the posterior distribution approximation used in the state-of-the-art message passing (MP) detectors in the presence of high MUI. We develop a graph neural network based framework to fine-tune the MP detectors' cavity distributions and thus improve the posterior distribution approximation in the MP detectors. We then propose two novel neural network based detectors which rely on the expectation propagation (EP) and Bayesian parallel interference cancellation (BPIC), referred to as the GEPNet and GPICNet detectors, respectively. The GEPNet detector maximizes detection performance, while GPICNet detector balances the performance and complexity. We provide proof of the permutation equivariance property, allowing the detectors to be trained only once, even in the systems with dynamic changes of the number of users. The simulation results show that the proposed GEPNet detector performance approaches maximum likelihood performance in various configurations and GPICNet detector doubles the multiplexing gain of BPIC detector.