论文标题
通过双流式生成模型重新识别可推广的人
Towards Generalizable Person Re-identification with a Bi-stream Generative Model
论文作者
论文摘要
由于其在看不见的数据域中的强大适应能力,可普遍的人重新识别(RE-ID)引起了人们日益增长的关注。但是,现有的解决方案通常会忽略跨摄像机(例如照明和解决方案差异)或行人未对准(例如,观点和姿势差异),这在适应新领域时很容易导致概括能力。在本文中,我们将这些困难提出为:1)相机摄像机(CC)问题,它表示由不同相机引起的各种人类外观变化; 2)摄像头(CP)问题,这表明在不同的摄像机观点或更改姿势下,由相同身份的人造成的行人未对准。为了解决上述问题,我们提出了一个双流生成模型(BGM),以学习与摄像机不变的全局功能和行人一致的本地功能融合的细粒度表示,该功能包含一个编码网络和两个流解码子网络。在原始的行人图像的指导下,通过过滤跨摄像机干扰因子来学习CC问题的摄像头全局功能。对于CP问题,另一个流将使用信息完整的语义上的零件图密集地学习人行人对齐的局部特征,以进行行人对齐。此外,提出了部分加权损失函数,以减少丢失零件对行人对齐的影响。广泛的实验表明,我们的方法优于大规模概括性重新ID基准的最先进方法,涉及域的概括设置和跨域设置。
Generalizable person re-identification (re-ID) has attracted growing attention due to its powerful adaptation capability in the unseen data domain. However, existing solutions often neglect either crossing cameras (e.g., illumination and resolution differences) or pedestrian misalignments (e.g., viewpoint and pose discrepancies), which easily leads to poor generalization capability when adapted to the new domain. In this paper, we formulate these difficulties as: 1) Camera-Camera (CC) problem, which denotes the various human appearance changes caused by different cameras; 2) Camera-Person (CP) problem, which indicates the pedestrian misalignments caused by the same identity person under different camera viewpoints or changing pose. To solve the above issues, we propose a Bi-stream Generative Model (BGM) to learn the fine-grained representations fused with camera-invariant global feature and pedestrian-aligned local feature, which contains an encoding network and two stream decoding sub-networks. Guided by original pedestrian images, one stream is employed to learn a camera-invariant global feature for the CC problem via filtering cross-camera interference factors. For the CP problem, another stream learns a pedestrian-aligned local feature for pedestrian alignment using information-complete densely semantically aligned part maps. Moreover, a part-weighted loss function is presented to reduce the influence of missing parts on pedestrian alignment. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on the large-scale generalizable re-ID benchmarks, involving domain generalization setting and cross-domain setting.