论文标题

自动驾驶系统测试的自动地图生成

Automatic Map Generation for Autonomous Driving System Testing

论文作者

Tang, Yun, Zhou, Yuan, Yang, Kairui, Zhong, Ziyuan, Ray, Baishakhi, Liu, Yang, Zhang, Ping, Chen, Junbo

论文摘要

高清图(HD)地图对于测试自动驾驶系统(ADSS)至关重要。高清地图基本上确定了测试方案的潜在多样性。但是,当前的高清地图遭受了两个主要局限性:公开可用的高清地图缺乏交界处多样性,以及构建新的高清图的成本耗费。因此,在本文中,我们提出了壮举2map,以自动生成简洁的高清图,并保证方案多样性。壮举2map专注于连接,因为它们会显着影响场景多样性,尤其是在城市道路网络中。 fart2map首先定义了一组特征来表征连接的功能。然后,feat 2map提取物和示例从输入高清地图或用户定义要求的列表中的混凝土连接功能。每个连接功能都会生成一个连接点。最后,壮举2map通过在网格布局中连接连接来构建地图。为了证明壮举2map的有效性,我们对SVL和开源广告Apollo的公共高清图进行了实验。结果表明,壮举2map可以(1)生成尺寸降低的新地图,同时根据测试的广告的代码覆盖范围和运动状态保持方案多样性,以及(2)通过从多个地图中合并交叉点或用户输入来生成增加方案多样性的新图。

High-definition (HD) maps are essential in testing autonomous driving systems (ADSs). HD maps essentially determine the potential diversity of the testing scenarios. However, the current HD maps suffer from two main limitations: lack of junction diversity in the publicly available HD maps and cost-consuming to build a new HD map. Hence, in this paper, we propose, FEAT2MAP, to automatically generate concise HD maps with scenario diversity guarantees. FEAT2MAP focuses on junctions as they significantly influence scenario diversity, especially in urban road networks. FEAT2MAP first defines a set of features to characterize junctions. Then, FEAT2MAP extracts and samples concrete junction features from a list of input HD maps or user-defined requirements. Each junction feature generates a junction. Finally, FEAT2MAP builds a map by connecting the junctions in a grid layout. To demonstrate the effectiveness of FEAT2MAP, we conduct experiments with the public HD maps from SVL and the open-source ADS Apollo. The results show that FEAT2MAP can (1) generate new maps of reduced size while maintaining scenario diversity in terms of the code coverage and motion states of the ADS under test, and (2) generate new maps of increased scenario diversity by merging intersection features from multiple maps or taking user inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源