论文标题
Galenet:灾难预测,管理和救济的多模式学习
GaLeNet: Multimodal Learning for Disaster Prediction, Management and Relief
论文作者
论文摘要
自然灾害(例如飓风)之后,数以百万计的需要紧急援助。为了最佳地分配资源,人类规划人员需要准确分析可以从多个来源流动的数据。这激发了可以集成多个数据源并有效利用它们的多模式机器学习框架的开发。迄今为止,研究界主要集中于单峰推理,以提供损害的细粒度评估。此外,以前的研究主要依赖于污点后的图像,这可能需要几天才能可用。在这项工作中,我们提出了一个多模式框架(GALENET),用于通过与天气数据和飓风轨迹相辅相成,以评估损害的严重性。通过对两次飓风的数据进行的广泛实验,我们证明了(i)与单峰方法相比,多模式方法的优点,以及(ii)Galenet在融合各种模态下的有效性。此外,我们表明,在没有后架图像的情况下,Galenet可以利用前柴刀图像,以防止决策延迟。
After a natural disaster, such as a hurricane, millions are left in need of emergency assistance. To allocate resources optimally, human planners need to accurately analyze data that can flow in large volumes from several sources. This motivates the development of multimodal machine learning frameworks that can integrate multiple data sources and leverage them efficiently. To date, the research community has mainly focused on unimodal reasoning to provide granular assessments of the damage. Moreover, previous studies mostly rely on post-disaster images, which may take several days to become available. In this work, we propose a multimodal framework (GaLeNet) for assessing the severity of damage by complementing pre-disaster images with weather data and the trajectory of the hurricane. Through extensive experiments on data from two hurricanes, we demonstrate (i) the merits of multimodal approaches compared to unimodal methods, and (ii) the effectiveness of GaLeNet at fusing various modalities. Furthermore, we show that GaLeNet can leverage pre-disaster images in the absence of post-disaster images, preventing substantial delays in decision making.