论文标题
一类非本地准线性系统的局部适应性结果及其应用于Whitham-Boussinesq系统的正当性
Local well-posedness result for a class of non-local quasi-linear systems and its application to the justification of Whitham-Boussinesq systems
论文作者
论文摘要
在本文中,我们证明了一类涉及傅立叶乘数的双曲线类型的准线性系统的局部适应性结果。在此类中与物理相关的系统中,有一个在建模自由表面水波中产生的Whitham-Boussinesq系统。我们的结果允许在相关的时间尺度上证明这些系统的严格理由是对通用水波系统的近似值,而与浅层参数无关。
In this paper we prove a local well-posedness result for a class of quasi-linear systems of hyperbolic type involving Fourier multipliers. Among the physically relevant systems in this class is a family of Whitham-Boussinesq systems arising in the modeling free-surface water waves. Our result allows to prove the rigorous justification of these systems as approximations to the general water waves system on a relevant time scale, independent of the shallowness parameter.