论文标题
基于基础图像的CVD风险估计的摄像机适应
Camera Adaptation for Fundus-Image-Based CVD Risk Estimation
论文作者
论文摘要
最近的研究验证了心血管疾病(CVD)风险与视网膜眼底图像之间的关联。结合深度学习(DL)和便携式底面摄像机将在各种情况下实现CVD风险估计并改善医疗保健民主化。但是,仍然有重大问题要解决。首要问题最重要的是研究材料数据库与生产环境中样本之间的不同摄像头差异。大多数准备进行研究的高质量视网膜图数据库都是从高端底面摄像机中收集的,并且不同摄像机之间存在明显的域差异。为了充分探索域差异问题,我们首先收集了一个配对的眼底摄像头(FCP)数据集,该数据集包含由高端TopCon视网膜摄像头捕获的配对底面图像和同一患者的低端Mediwork Portable fellus摄像头。然后,我们提出了跨外观特征对准预训练方案和一个自发注意的摄像头适配器模块,以提高模型的鲁棒性。交叉效力特征对齐训练鼓励模型从同一患者的左右眼底图像中学习常识,并改善模型的概括。同时,设备改编模块学习了从目标域到源域的特征转换。我们对英国生物银行数据库和我们的FCP数据进行了全面的实验。实验结果表明,使用我们的方法提高了CVD风险回归准确性和两个相机的结果一致性。该代码可在此处找到:\ url {https://github.com/linzhlalala/cvd-risk-lasike-base-base--on-retinal-fundus-images}
Recent studies have validated the association between cardiovascular disease (CVD) risk and retinal fundus images. Combining deep learning (DL) and portable fundus cameras will enable CVD risk estimation in various scenarios and improve healthcare democratization. However, there are still significant issues to be solved. One of the top priority issues is the different camera differences between the databases for research material and the samples in the production environment. Most high-quality retinography databases ready for research are collected from high-end fundus cameras, and there is a significant domain discrepancy between different cameras. To fully explore the domain discrepancy issue, we first collect a Fundus Camera Paired (FCP) dataset containing pair-wise fundus images captured by the high-end Topcon retinal camera and the low-end Mediwork portable fundus camera of the same patients. Then, we propose a cross-laterality feature alignment pre-training scheme and a self-attention camera adaptor module to improve the model robustness. The cross-laterality feature alignment training encourages the model to learn common knowledge from the same patient's left and right fundus images and improve model generalization. Meanwhile, the device adaptation module learns feature transformation from the target domain to the source domain. We conduct comprehensive experiments on both the UK Biobank database and our FCP data. The experimental results show that the CVD risk regression accuracy and the result consistency over two cameras are improved with our proposed method. The code is available here: \url{https://github.com/linzhlalala/CVD-risk-based-on-retinal-fundus-images}