论文标题

贝叶斯病变估计带有结构化的尖峰和slab先验

Bayesian Lesion Estimation with a Structured Spike-and-Slab Prior

论文作者

Menacher, Anna, Nichols, Thomas E., Holmes, Chris, Ganjgahi, Habib

论文摘要

在白质中累积的神经脱髓鞘和脑损伤似乎是在T2加权MRI扫描中以病变形式进行的高强度区域。在人群水平上对二进制图像进行建模,其中每个体素代表病变的存在,在理解衰老和炎症性疾病中起着重要作用。我们提出了一个可扩展的层次贝叶斯空间模型,称为Bless,能够通过将连续的尖峰和slab混合物放置在空间变化的参数上,并在包含额外的可能性内将稀疏性量规定稀疏量来处理二元响应。使用平均场变异推断与动态后探索的使用,这是一种退火样策略,可改善优化,使我们的方法可以扩展到大型样本量。我们的方法还解释了基于贝叶斯自举的想法和带有随机收缩靶标的尖刺和slab先验的近似后验抽样方法来低估后差异。除了准确的不确定性量化外,这种方法还能够产生基于新颖的群集大小的成像统计数据,例如群集大小的可信间隔以及群集发生的可靠性度量。最后,我们通过模拟研究和对英国生物库的应用来验证我们的结果,这是一项大规模的病变图研究,样本量为40,000名受试者。

Neural demyelination and brain damage accumulated in white matter appear as hyperintense areas on T2-weighted MRI scans in the form of lesions. Modeling binary images at the population level, where each voxel represents the existence of a lesion, plays an important role in understanding aging and inflammatory diseases. We propose a scalable hierarchical Bayesian spatial model, called BLESS, capable of handling binary responses by placing continuous spike-and-slab mixture priors on spatially-varying parameters and enforcing spatial dependency on the parameter dictating the amount of sparsity within the probability of inclusion. The use of mean-field variational inference with dynamic posterior exploration, which is an annealing-like strategy that improves optimization, allows our method to scale to large sample sizes. Our method also accounts for underestimation of posterior variance due to variational inference by providing an approximate posterior sampling approach based on Bayesian bootstrap ideas and spike-and-slab priors with random shrinkage targets. Besides accurate uncertainty quantification, this approach is capable of producing novel cluster size based imaging statistics, such as credible intervals of cluster size, and measures of reliability of cluster occurrence. Lastly, we validate our results via simulation studies and an application to the UK Biobank, a large-scale lesion mapping study with a sample size of 40,000 subjects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源