论文标题

给定独立数的最小光谱半径的图形

Graphs with the minimum spectral radius for given independence number

论文作者

Hu, Yarong, Huang, Qiongxiang, Lou, Zhenzhen

论文摘要

令$ \ mathbb {g} _ {n,α} $为订单$ n $和独立数$α$的连接图。给定$ k = n-α$,在$ \ mathbb {g} _ {n,α} $之间具有最小光谱半径的图称为最小化图。 Stevanović在古典书中[D. Stevanović,《图形光谱半径》,学术出版社,阿姆斯特丹,2015年。]指出,在$ \ mathbb {g} _ {n,α} $中确定最小化图在$ 96 $上似乎是一个棘手的问题。最近,\ cite {lou}中的lou and guo证明了$ \ mathbb {g} _ {n,α} $的最小化图,如果$α\ ge \ ge \ lceil \ frac \ frac {n} {2} {2} {2} {2} \ rceil $。在本文中,我们进一步详细介绍了最小化图的结构特征,然后为其构建定理。因此,从理论上讲,我们完全确定$ \ mathbb {g} _ {n,α} $中的最小化图以及其光谱半径,对于任何给定的$ k = n-α\ le \ le \ frac {n} {2} $。作为一个应用程序,我们确定$ \ mathbb {g} _ {n,α} $中的所有最小化图,对于$α= n-1 = n-1,n-2,n-3,n-4,n-4,n-5,n-6 $以及它们的光谱半径,前四个结果在\ cite \ cite {xu,lou,lou,lou}和最后两个是新的。

Let $\mathbb{G}_{n,α}$ be the set of connected graphs with order $n$ and independence number $α$. Given $k=n-α$, the graph with minimum spectral radius among $\mathbb{G}_{n,α}$ is called the minimizer graph. Stevanović in the classical book [D. Stevanović, Spectral Radius of Graphs, Academic Press, Amsterdam, 2015.] pointed that determining minimizer graph in $\mathbb{G}_{n,α}$ appears to be a tough problem on page $96$. Very recently, Lou and Guo in \cite{Lou} proved that the minimizer graph of $\mathbb{G}_{n,α}$ must be a tree if $α\ge\lceil\frac{n}{2}\rceil$. In this paper, we further give the structural features for the minimizer graph in detail, and then provide of a constructing theorem for it. Thus, theoretically we completely determine the minimizer graphs in $\mathbb{G}_{n,α}$ along with their spectral radius for any given $k=n-α\le \frac{n}{2}$. As an application, we determine all the minimizer graphs in $\mathbb{G}_{n,α}$ for $α=n-1,n-2,n-3,n-4,n-5,n-6$ along with their spectral radii, the first four results are known in \cite{Xu,Lou} and the last two are new.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源