论文标题

从了解遗传漂移到智能主体机制,以估算分布算法

From Understanding Genetic Drift to a Smart-Restart Mechanism for Estimation-of-Distribution Algorithms

论文作者

Zheng, Weijie, Doerr, Benjamin

论文摘要

分布算法(EDA)是优化算法,在搜索空间上学习分布,可以轻松地采样良好的解决方案。大多数EDA的关键参数是样本量(人口尺寸)。如果人口规模太小,则概率模型的更新基于几个样本,从而导致遗传漂移的不希望效应。人口太大避免了遗传漂移,但减慢了过程。 我们基于对种群规模如何导致遗传漂移的最新定量分析,我们为EDA设计了一种智能的正式机制。通过在遗传漂移的风险很高时停止运行,它会自动以良好的参数状态运行EDA。 通过数学运行时分析,我们证明了此智能总结方案的一般性能保证。这特别表明,在许多情况下,最佳(特定问题)参数值已知,重新启动方案会自动找到这些,从而导致渐近最佳性能。 我们还进行了广泛的实验分析。在四个经典的基准问题上,我们清楚地观察到人口规模对性能的关键影响,并且我们发现智能重点方案导致具有最佳参数值可获得的性能。我们的结果还表明,先前对最佳人口规模的基于理论的建议可能远非最佳群体,从而导致表现明显不如通过智能重点方案获得的绩效。我们还对文献,最大切割问题和两部分问题的两个组合优化问题进行了PBIL(跨透明算法)进行实验。同样,我们观察到,智能重点机制的人口规模比文献中建议的价值要好得多,从而导致表现更好。

Estimation-of-distribution algorithms (EDAs) are optimization algorithms that learn a distribution on the search space from which good solutions can be sampled easily. A key parameter of most EDAs is the sample size (population size). If the population size is too small, the update of the probabilistic model builds on few samples, leading to the undesired effect of genetic drift. Too large population sizes avoid genetic drift, but slow down the process. Building on a recent quantitative analysis of how the population size leads to genetic drift, we design a smart-restart mechanism for EDAs. By stopping runs when the risk for genetic drift is high, it automatically runs the EDA in good parameter regimes. Via a mathematical runtime analysis, we prove a general performance guarantee for this smart-restart scheme. This in particular shows that in many situations where the optimal (problem-specific) parameter values are known, the restart scheme automatically finds these, leading to the asymptotically optimal performance. We also conduct an extensive experimental analysis. On four classic benchmark problems, we clearly observe the critical influence of the population size on the performance, and we find that the smart-restart scheme leads to a performance close to the one obtainable with optimal parameter values. Our results also show that previous theory-based suggestions for the optimal population size can be far from the optimal ones, leading to a performance clearly inferior to the one obtained via the smart-restart scheme. We also conduct experiments with PBIL (cross-entropy algorithm) on two combinatorial optimization problems from the literature, the max-cut problem and the bipartition problem. Again, we observe that the smart-restart mechanism finds much better values for the population size than those suggested in the literature, leading to a much better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源