论文标题

基于注意的动态子空间学习者用于医学图像分析

Attention-based Dynamic Subspace Learners for Medical Image Analysis

论文作者

Adiga V, Sukesh, Dolz, Jose, Lombaert, Herve

论文摘要

学习相似性是医学图像分析的关键方面,尤其是在推荐系统或发现图像中解剖学数据的解释时。大多数现有方法使用单个公制学习者在嵌入空间中学习了这种相似性。但是,图像具有多种对象属性,例如颜色,形状或人工制品。使用单个公制学习者编码此类属性是不足的,并且可能无法概括。取而代之的是,多个学习者可以专注于总体嵌入子空间中这些属性的单独方面。但是,这意味着每个新数据集经验发现的学习者数量。这项工作,动态的子空间学习者,建议通过消除需要了解学习者的数量并在培训期间汇总新的子空间学习者来动态利用多个学习者。此外,通过将注意力模块整合到我们的方法中,可以实现此类子空间学习的视觉解释性。这种集成的注意机制提供了判别图像特征的视觉见解,这些特征有助于图像集的聚类和嵌入功能的视觉解释。在应用图像聚类,图像检索和弱监督分段的应用中,评估了我们基于注意力的动态子空间学习者的好处。我们的方法通过多个学习者基准的表现取得了竞争成果,并且在三个不同的公共基准数据集上的聚类和检索分数方面显着优于分类网络。此外,我们的注意力图提供了代理标签,与最先进的解释技术相比,该分割精度的骰子得分高达15%。

Learning similarity is a key aspect in medical image analysis, particularly in recommendation systems or in uncovering the interpretation of anatomical data in images. Most existing methods learn such similarities in the embedding space over image sets using a single metric learner. Images, however, have a variety of object attributes such as color, shape, or artifacts. Encoding such attributes using a single metric learner is inadequate and may fail to generalize. Instead, multiple learners could focus on separate aspects of these attributes in subspaces of an overarching embedding. This, however, implies the number of learners to be found empirically for each new dataset. This work, Dynamic Subspace Learners, proposes to dynamically exploit multiple learners by removing the need of knowing apriori the number of learners and aggregating new subspace learners during training. Furthermore, the visual interpretability of such subspace learning is enforced by integrating an attention module into our method. This integrated attention mechanism provides a visual insight of discriminative image features that contribute to the clustering of image sets and a visual explanation of the embedding features. The benefits of our attention-based dynamic subspace learners are evaluated in the application of image clustering, image retrieval, and weakly supervised segmentation. Our method achieves competitive results with the performances of multiple learners baselines and significantly outperforms the classification network in terms of clustering and retrieval scores on three different public benchmark datasets. Moreover, our attention maps offer a proxy-labels, which improves the segmentation accuracy up to 15% in Dice scores when compared to state-of-the-art interpretation techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源