论文标题

使用贝叶斯优化设计MacPherson悬架体系结构

Designing MacPherson Suspension Architectures using Bayesian Optimization

论文作者

Thomas, Sinnu Susan, Palandri, Jacopo, Lakehal-ayat, Mohsen, Chakravarty, Punarjay, Wolf-Monheim, Friedrich, Blaschko, Matthew B.

论文摘要

工程设计传统上是手工执行的:专家根据过去的经验做出设计建议,然后对这些建议进行测试,以符合某些目标规格。使用所谓的纪律模型首先通过计算机模拟进行合规性测试。可以通过有限元分析,多机系统方法等实现此类模型。然后将通过此仿真的设计考虑进行物理原型。整个过程可能需要几个月的时间,并且在实践中是一笔巨大的成本。我们已经开发了一个贝叶斯优化系统,用于通过直接优化针对设计参数的目标规范来部分自动化此过程。所提出的方法是计算不需要的高维非线性函数的广义倒数的一般框架,例如梯度信息,这通常是从纪律模型中获得的。我们此外,基于(i)收敛到最佳满足所有指定设计标准的解决方案,或(ii)收敛到最小值解决方案,我们开发了两层收敛标准。我们证明了使用最先进的商业纪律模型的行业设置动机的车辆底盘设计问题的拟议方法。我们表明,所提出的方法是一般,可扩展和高效的,并且可以根据流行的贝叶斯优化软件包中的现有概念和子例程直接实现新颖的收敛标准。

Engineering design is traditionally performed by hand: an expert makes design proposals based on past experience, and these proposals are then tested for compliance with certain target specifications. Testing for compliance is performed first by computer simulation using what is called a discipline model. Such a model can be implemented by a finite element analysis, multibody systems approach, etc. Designs passing this simulation are then considered for physical prototyping. The overall process may take months, and is a significant cost in practice. We have developed a Bayesian optimization system for partially automating this process by directly optimizing compliance with the target specification with respect to the design parameters. The proposed method is a general framework for computing a generalized inverse of a high-dimensional non-linear function that does not require e.g. gradient information, which is often unavailable from discipline models. We furthermore develop a two-tier convergence criterion based on (i) convergence to a solution optimally satisfying all specified design criteria, or (ii) convergence to a minimum-norm solution. We demonstrate the proposed approach on a vehicle chassis design problem motivated by an industry setting using a state-of-the-art commercial discipline model. We show that the proposed approach is general, scalable, and efficient, and that the novel convergence criteria can be implemented straightforwardly based on existing concepts and subroutines in popular Bayesian optimization software packages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源