论文标题
无限的黑洞
An infinity of black holes
论文作者
论文摘要
在一般相对论(无物质)中,通常有一个静态的,最大对称的黑洞溶液的参数家族,其质量标记为质量。我们表明,有更多黑洞的情况。我们在六个和七个维度上研究具有共形边界的渐近抗DE保姆解决方案,这是球体交叉时间的产物。我们表明,静态,最大对称的黑洞的家族数量取决于边界球的半径的比率,$λ$。随着$λ$接近临界值,$λ_{c} $,此类家庭的数量变得无限。在每个家庭中,我们可以将黑洞的大小提高到零,获得无限数量的静态,最大对称的非黑孔溶液。我们讨论了这些结果的几种应用,包括霍金 - 页面过渡和双场理论的相图,在球体的产物,新的正能猜想等上。
In general relativity (without matter), there is typically a one parameter family of static, maximally symmetric black hole solutions labelled by their mass. We show that there are situations with many more black holes. We study asymptotically anti-de Sitter solutions in six and seven dimensions having a conformal boundary which is a product of spheres cross time. We show that the number of families of static, maximally symmetric black holes depends on the ratio, $λ$, of the radii of the boundary spheres. As $λ$ approaches a critical value, $λ_{c}$, the number of such families becomes infinite. In each family, we can take the size of the black hole to zero, obtaining an infinite number of static, maximally symmetric non-black hole solutions. We discuss several applications of these results, including Hawking-Page phase transitions and the phase diagram of dual field theories on a product of spheres, new positive energy conjectures, and more.