论文标题
在球体上有效的有理近似
Effective rational approximation on spheres
论文作者
论文摘要
我们证明了对球体s $^n $的二磷抗近似值的计数函数的有效估计。我们在正交晶格的空间上使用均匀的动力学,特别是有效的等均分配结果和Siegel变换的非差异估计值,这是基于Alam-Ghosh和Kleinbock-Merrill的最新结果。
We prove an effective estimate for the counting function of Diophantine approximants on the sphere S$^n$. We use homogeneous dynamics on the space of orthogonal lattices, in particular effective equidistribution results and non-divergence estimates for the Siegel transform, developping on recent results of Alam-Ghosh and Kleinbock-Merrill.