论文标题
通过差异池将肿瘤内异质性纳入弱监督的深度学习模型
Incorporating intratumoral heterogeneity into weakly-supervised deep learning models via variance pooling
论文作者
论文摘要
监督的学习任务,例如GigaiPixel全幻灯片图像(WSIS)等癌症存活预测是计算病理学中的关键挑战,需要对肿瘤微环境的复杂特征进行建模。这些学习任务通常通过不明确捕获肿瘤内异质性的深层多企业学习(MIL)模型来解决。我们开发了一种新颖的差异池体系结构,使MIL模型能够将肿瘤内异质性纳入其预测中。说明了基于代表性补丁的两个可解释性工具,以探测这些模型捕获的生物学信号。一项针对癌症基因组图集的4,479吉米像素WSI的实证研究表明,在MIL框架中增加方差汇总可改善五种癌症类型的生存预测性能。
Supervised learning tasks such as cancer survival prediction from gigapixel whole slide images (WSIs) are a critical challenge in computational pathology that requires modeling complex features of the tumor microenvironment. These learning tasks are often solved with deep multi-instance learning (MIL) models that do not explicitly capture intratumoral heterogeneity. We develop a novel variance pooling architecture that enables a MIL model to incorporate intratumoral heterogeneity into its predictions. Two interpretability tools based on representative patches are illustrated to probe the biological signals captured by these models. An empirical study with 4,479 gigapixel WSIs from the Cancer Genome Atlas shows that adding variance pooling onto MIL frameworks improves survival prediction performance for five cancer types.