论文标题

图形的稀疏性允许两个不同的特征值

Sparsity of Graphs that Allow Two Distinct Eigenvalues

论文作者

Barrett, Wayne, Fallat, Shaun, Furst, Veronika, Kenter, Franklin, Nasserasr, Shahla, Rooney, Brendan, Tait, Michael, van der Holst, Hein

论文摘要

图$ g $的参数$ q(g)$是$ g $所描述的对称矩阵家族中不同特征值的最小数量。结果表明,如果$ n $偶数,则连接的图形$ g $所需的最小边数为$ q(g)= 2 $是$ 2N-4 $,如果$ n $是奇数,则$ 2N-3 $。另外,给出了在任何一种情况下都实现平等的图表的表征。

The parameter $q(G)$ of a graph $G$ is the minimum number of distinct eigenvalues over the family of symmetric matrices described by $G$. It is shown that the minimum number of edges necessary for a connected graph $G$ to have $q(G)=2$ is $2n-4$ if $n$ is even, and $2n-3$ if $n$ is odd. In addition, a characterization of graphs for which equality is achieved in either case is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源